Support and Centrality: Learning Weights for
Knowledge Graph Embedding Models

Gengchen Mai, Krzysztof Janowicz, and Bo Yan

STKO Lab, University of California, Santa Barbara, CA, USA

Abstract. Computing knowledge graph (KG) embeddings is a tech-
nique to learn distributional representations for components of a knowl-
edge graph while preserving structural information. The learned embed-
dings can be used in multiple downstream tasks such as question an-
swering, information extraction, query expansion, semantic similarity,
and information retrieval. Over the past years, multiple embedding tech-
niques have been proposed based on different underlying assumptions.
The most actively researched models are translation-based which treat
relations as translation operations in a shared (or relation-specific) space.
Interestingly, almost all KG embedding models treat each triple equally,
regardless of the fact that the contribution of each triple to the global in-
formation content differs substantially. Many triples can be inferred from
others, while some triples are the foundational (basis) statements that
constitute a knowledge graph, thereby supporting other triples. Hence,
in order to learn a suitable embedding model, each triple should be
treated differently with respect to its information content. Here, we pro-
pose a data-driven approach to measure the information content of each
triple with respect to the whole knowledge graph by using rule mining
and PageRank. We show how to compute triple-specific weights to im-
prove the performance of three KG embedding models (TransE, TransR
and HolE). Link prediction tasks on two standard datasets, FB15K and
WN18, show the effectiveness of our weighted KG embedding model over
other more complex models. In fact, for FB15K our TransE-RW em-
beddings model outperforms models such as TransE, TransM, TransH,
and TransR by at least 12.98% for measuring the Mean Rank and at
least 1.45% for HIT@10. Our HolE-RW model also outperforms HolE
and ComplEx by at least 14.3% for MRR and about 30.4% for HIT@1
on FB15K. Finally, TransR-RW show an improvement over TransR by
3.90% for Mean Rank and 0.87% for HITQ@10.

Keywords: Knowledge Graph Embedding - Rule Mining - PageRank.

1 Introduction

A knowledge graph (KG) is a data repository that describes entities and their
relationships across domains according to some schema, e.g., an ontology, and
is typically organized in the form of a graph, e.g., a directed multi-relational
graph [11], such that the nodes represent (real-world) entities and edges rep-
resent their relations. As argued by Paulheim [9] there is no commonly agreed

2 Mai, G. et al.

upon formal definition of the term nor a common technology stack. Examples
range from the Google Knowledge Graph, Microsoft’s Satori, and Freebase to
KGs based on W3C technologies such as DBpedia, YAGO, and Wikidata. In
fact, one can consider the entire Linked Data cloud as a global, densely inter-
linked knowledge graph. A statement in such KG is represented in the form of
a triple. In the Linked Data community, these triples are often referred to as
subject-predicate-object triple, while the knowledge graph embeddings commu-
nity has settled on the term head-relation-tail; which we will use throughout this
work to ease comparison to previous research. To give a concrete example, such
triples may encode the statement that Santa Barbara is part of California (dbr:
Santa_Barbara,_California, dbo:isPart0f, dbr:California) or that Santa
Barbara has a certain population count (dbr:Santa_Barbara,_California,
dbo:populationTotal, 88410~"xsd:integer). In the first case, the relation is
a so-called object property, while the second case shows a datatype property.

Similar to word embedding which encodes each word as a dense continuous
vector, knowledge graph embedding [8,1,12] aims at representing components
of a knowledge graph including entities and relations into continuous vectors or
matrices while preserving the structural information of the KG. Those learned
entities and relations embeddings can be used in multiple downstream tasks
such as KG completion [5], relation inference, relation extraction, knowledge fu-
sion, question answering, query expansion, information extraction, information
retrieval [6], and recommender system. Over the past years, multiple embedding
techniques have been proposed based on different assumptions. The most ac-
tively researched category are translation-based models including models such
as TransE [1], TransH [12], TransM [3] and TransR [5] which treat relations as
translation operations in a shared (or relation specific) space. Recently, meth-
ods that measure the plausibility of triples by matching the latent semantics of
entities and relations have been proposed such as HolE [7] and ComplEx [10].
[2]. Interestingly, most work on learning knowledge graph embeddings focuses
entirely on object properties, and, therefore, we will restrict our examples and
model to those as well'. Furthermore, most KG embedding models treat all triple
equally, despite the fact that their information content, i.e., their contribution to
the overall graph, differers substantially. Some triples act as foundational (basis)
statements that cannot be reconstructed from others, while most other triples
can be inferred. Put differently, the first kind of triples offer support for the
second kind. Consequently, in order to emphasize the information content con-
tribution of each triple to the knowledge graph and to learn a suitable embedding
model, each triple should be weighted differently.

The research contributions of our work are as follows: we proposed
a data-driven approach to measure the information content of each triple with
respect to the entire knowledge graph. We apply rule mining and PageRank to
estimate the inference structure of the current KG and derive the information
content of each triple. Rule mining, here AMIE+ [4], enables us to measure the

! Counter-examples include KG embedding techniques such as RESCAL which also
includes literals [§]

Learning Weights for Knowledge Graph Embedding Models 3

support between triples, while PageRank is used to determine the centrality of
triples within a secondary graph created from the left-hand side and right-hand
sides of the mined rules. The PageRank scores of this secondary graph are then
used to compute triple weights which are then used in the loss function of the
KG embedding model. In order to demonstrate the effectiveness of the proposed
measure, we modify the translation-based KG embedding model TransE, TransR
and the semantic matching model HolE by introducing a triple-specific weight-
ing schema. We use two commonly used datasets, FB15K and WNI18, and a
link prediction task to show the effectiveness of our weighted model over other
models. In fact, for FB15K our TransE-RW? embeddings model outperforms
models such as TransE, TransM, TransH, and TransR by at least 12.98% for
measuring the Mean Rank and at least 1.45% for HIT@10. Our HolE-RW model
also outperforms HolE and ComplEx by at least 14.3% for MRR and about
30.4% for HIT@! on FB15K. In addition, our TransR-RW model also show an
improvement over TransR by 3.90% for Mean Rank and 0.87% for HIT@10. The
smaller improvement of our method over TransR may be caused by the higher
complexity (larger number of parameters) of TransR.

The remainder of this paper is structured as follows. First, we discuss work
related to our proposed method in Section 2. Then, in Section 3, we present the
methods to measure the information content of triples and describe a weighted
KG embedding model. Next, experiment results are presented and discussed in
Section 4. Finally, in Section 5, we summarize our work.

2 Related Work

Here, we review existing work on knowledge graph embeddings, point out their
advantages and disadvantages, and compare them with our proposed models.

KG embedding aims at learning distributional representations for compo-
nents of a knowledge graph. Entities are usually represented as continuous vec-
tors while relations, i.e., object properties, are typically represented as vectors
[1,12], matrices [5], or tensors. More complex representation methods are more
expressive while at the same time suffer from their higher complexity. In order to
set up a learning problem, a scoring function f,.(h,t) is defined on each triple/s-
tatement (h,r,t) which measures the accuracy of translation or the probability
of the correctness of the current triple.® Finally, a loss function is defined to
set up an optimization problem. In order to learn meaningful representations
of entities and relations, we aim at minimize the loss while maximize the total
plausibility of the observed triples.

Most KG embedding models treat a knowledge base as a collection of triples
St = {(h,r,t)} and take each triple as one training sample. According to [11],
KG embedding models can be classified into two groups: 1) translation-based
models (e.g. TransE, TransH, TransR, and TransD) and 2) semantic matching

2 Rule-supported Weights.
3 Recall that r stands for a given relation, h for head, i.e., a triple’s subject, and ¢ for
tail, i.e., an entity in the object position.

4 Mai, G. et al.

models (e.g. RESCAL, HolE [7], and ComplEx [10]). We will focus on three
models from these two groups: TransE, TransR and HolE.

Translation-based models treat relations as translation operations on the en-
tity space or a relation specific space. The first and most well-known translation-
based model is TransE [1]. The idea is inspired by the linguistic regularities
discovered among the learned word embeddings. For example, the relationship
between Angola and Kwanza is similar to the relationship between Iran and
Rial which can be expressed by an equation of their corresponding word vec-
tors: WRial =~ WKwanza — WAngola +Wrran OT WAngola — WKwanza ~ WIran — WRial-
A hidden translation vector is assumed to operate between Angola and Kwanza
which represent the currency relation between a country and the currency it
uses. As an analogy, given a triple (h,r,t), TransE assumes that relation r is an
explicit translation operation which translates the head entity h to the tail entity
t. In other words, it assumes h +r ~ t when (h, r,t) holds. Scoring is defined as
the distance between h 4+ r and t. In Eq. 1, || . || can be Li- or Ly-norm.

fr(ht) =[[h+r—t || (1)

Although TransE is effective at modeling one-to-one relations, the assump-
tion that h+r a2 t when (h,r,t) holds is less suitable when dealing with one-to-
many, many-to-one, and many-to-many relations. It also has difficulty handling
reflexive and transitive relations. Based on the observation of these limitations
of TransFE, many translation-based models have been proposed to address these
issues. TransH projects head entity h and tail entity ¢ into the relation specified
hyperplane which is defined by the norm vector u, of the current relation r.
Then the score function is defined as the distance between (h —u, hu,) +r and
(t —u, tu,) in this hyperplane. In Eq. 2, || . || represents the square of Ly-norm.

fr(h,t) =[(h —u huy) + v — (- vy tuy) |3 (2)

TransR and TransD share a similar idea as TransH; however, rather than
project entities into hyperplanes, they introduce relation-specific spaces.

Besides allowing different relation-specific embeddings for each entity, an-
other line of research is relaxing the overly restrictive requirement of h +r ~ t.
TransM associates each training triple (h, r,t) with a weight w, which represents
the degree of mapping of the corresponding relation r (See Eq. 3). The weight
w,. is calculated by using 1) the average number of head entities per tail entity,
denoted by h,pt, (head per tail) and 2) the average number of tail entities per
head entity, denoted by ¢,ph, (tail per head). This means that a triple will re-
ceive lower weight if its relation r has more complex mapping properties. Our
proposed method is similar to TransM in the sense that both of them give a
weight to each triple. However, TransM uses the same weight for all triples with
the same relation, while our method given each triple a different weight accord-
ing to its information content wrt. the KG. We will show that this substantially
improves over the results reported for TransM. It also addresses the issue that
TransM essentially simply puts more weight on those triples that are more in
line with TransE’s underlying h + r ~ t assumption.

Learning Weights for Knowledge Graph Embedding Models 5

1
B log(hrptr + trphr)

Another groups of KG embeddings models, so-called semantic matching mod-
els, measure the plausibility of triples by matching the latent semantics of entities
and relations. Different models capture the interactions between latent factors
of entity and relation embeddings in different ways. Here we discuss HolE as
an example. The scoring function of Holographic Embeddings (HolE) is shown
in Eq. 4. By using circular correlation operation x to compose entity represen-
tations, HolE is able to capture rich interactions between entity embeddings
while maintaining its efficiency and simplicity. The non commutativeness of x
also make it keep the asymmetry of the relations. o is the logistic function and
— is used to align the interpretation of the scoring function with other models
which implies that smaller score indicates a higher plausibility of the triple.

fr(hvt) = Wy ” h+r—t ||

[h+r—t] (3)

-1 d-1
fr(h,t) = —o(rT(h*t)) = —a(Z [r]; Z [h] - [t] (k+i) moa d~> (4)

=0 k=0

3 Methodology

Consider the problem of measuring the information content contribution of each
triple to a KG; intuitively a triple T; = (h;, r;,t;) will have a higher contribution
if other triples can be inferred from it. These inferred triples can be derived
either purely based on T; or based on a conjunction condition including 7T; and
other triples. Hence, one way to interpret the information content contribution
of a triple T; is that if T; is excluded from the current KG, a certain number of
triples cannot be inferred from it any longer. For example, as for DBpedia, if the
triple T; (dbr:Santa_Barbara, _California, dbo:isPartOf, dbr:California) is
excluded from DBpedia, hundreds of triples which can be inferred from it based
on the transitive property of parthood, e.g., that University of California, Santa
Barbara is part of California given that we know that it is located in Santa
Barbara, will no longer be reachable. Put differently, number of inferred triples
of triple T; is a measure of the information content contribution of T; to the KG.
However, there are some shortcomings to such measure.

First, enumerating each triple and executing inferences on the entire KG may
be computationally complex given a large graph and ontology (particularly us-
ing an expressive description logic). Second, this type of reasoning also requires
a formal ontology in the first place and thus only applies to Semantic Web
style knowledge graphs that use ontologies that explicitly make use of language
features such as subclassing. In addition, isolated triples become a substantial
problem. Isolated triples are triples in a KG which can neither be used to in-
fer any another triples nor can be inferred by any triples. By using the method
above, these triples will have a very low information content because they cannot
infer any triples and excluding them from the KG will not affect the number of

6 Mai, G. et al.

inferred triples. However, information theory tells us that those isolated triples
should have a high information content as they cannot be compressed. Conse-
quently, we need to go beyond the intuitive notion of information content for
triples introduced above. At the same time, and to appeal to the broader KG
community, we want to work buttom-up first, i.e. not rely on the existence of
a strong formal ontology. In order to provide an automatic and general method
for measuring the information content of triples, and as will be detailed below,
we will use rule mining to estimate the support between triples and then mea-
sure the centrality of triples within a secondary graph formed by these support
relations using PageRank. The result will be individual weights per triple that
we will use in the loss function to learn embeddings.

Given a KG (the training dataset) represented as a set of triples ST =
{(hi,ri,t;)}. For each triple (h;,7;,t;), its head and tail entity are h;,t; € E
(the set of entities) and its relation is r; € L (the set of relations). Our model
measures the contribution of each triple to the global information content of
the KG by investigating the inference relationships among these triples and use
this measure to learn a suitable KG embedding model for the current KG. Our
method can be divided into four steps: 1) rule mining; 2) rule instantiation; 3)
triple inference graph construction and triple weights calculation; and 4) learn-
ing a weighted KG embedding model. Fig. 1 illustrates the first three steps of
our workflow and each of these four steps will be described in detail below.

Knowledge Graph

AMIE+
'

‘ ?a :locations_in_time_zone ?b A ?c :containedby ?b = ?c :time_zones ?a ‘

instantiate triples

:Eastern_Time_Zone :locations_in_time_zone :Ontario A :Barrie :containedby :Ontario =
:Barrie :time_zones :Eastern_Time_Zone

l

construct graph

’

113\
23/ 7

—

Z

N/
/

Fig. 1. The workflow of computing the information content of each triple in a KG

3.1 Rule Mining

Generally speaking, logical rule mining is a machine learning method to find
rules in a KG that describe the common correlations between triples. Modern
rule mining systems like AMIE and AMIE+ [4] aim at mining logical rules
efficiently from large RDF-based knowledge bases. An atom in a Horn rule R; is
a triple whose subject or/and object is replaced by variables. A Horn rule R; is
composed of a head r(z,y) and a body {B1, Bs, ..., B, }, where the head r(z,y)
is a single atom and the body is the conjunction of multiple atoms or just one

Learning Weights for Knowledge Graph Embedding Models 7

atom [4]. Eq. 5 shows the general form of a Horn rule R; where both r(z,y) and
B; are atoms. Note that in r(x,y), r represents a specific relation where x and
y are subject and object who can be either real entities or variables. R; can be
abbreviated as B = r(z,y). We utilize AMIE+ for rule mining. The rule in the
second box from Fig. 1 is an example of a mined rules from AMIE+.

R;: By AN By A... AN B, = r(z,y) (5)

AMIE+ requires three parameters: a threshold minHC' of the head coverage
of the mined rules, a maximum rule length mazLen, and a threshold minConf
for the PCA confidence score. We will describe each of them in detail below.

Given arule R; : B= r(z,y), the support of R; is the number of correct pre-
dictions of rule R; in the current KG, or, in other words, the number of distinct
pairs of head and tail entities #(z,y) in the rule head among all the instan-
tiations of the current rule. Rule instantiation is the process to substitute the
variables in a rule with entities (constants) in the KG such that all instantiated
atoms/triples in the rule head and rule body are in the KG. The result rules are
called grounded rules.

Based on the definition of rule instantiation, a naive way to define how good
a mined rule is can be computed as the number of instantiation of the current
rule over the size of the current KG (See Eq. 6). In Eq. 6, #(S™) represents the
number of triples in ST. We refer to it as frequency in the following. Instead of
using frequency, AMIE+ uses head coverage which is defined as the support of
a rule divided by the number of statements with rule head relation r (See Eq.
7). Each rule from AMIE+ has a head coverage value. The parameter minHC
controls the minimum head coverage value of the mined rules such that all rules
with head coverage less than minHC will be excluded. The default is 0.01.

#(instatz’ate(? = r(z,y)))

frea(R) = P (©
he(Ry) = support(f(:; r(z,y)) 7)

Second, mazLen restricts the maximum length of the mined rules. The length
of rules is defined as the number of atoms in the rule including head and body.
For example, the rule in the second box in Fig. 1 has length 3. A longer rule
length means a larger rule search space for AMIE+. The default mazLen is 3.

Third, minConf controls the minimum PCA confidence scores of mined rules.
Head coverage does not take into consideration false predictions of the mined
rule, while the confidence scores provide a way to obtain counterexamples for the
rule mining. The mined rules are associated with two confidence scores - standard
confidence score (Closed-World Assumption) and PCA confidence score (Partial
Completeness Assumption) - which describe how confident AMIE+ is about the
currently mined rules based on the observed triples in the KG. The higher the
confidence scores is, the more likely the rule will make correct predictions. Fur-
ther detail for these two confidence scores, are described in [4]. AMIE+ utilizes

8 Mai, G. et al.

the PCA confidence scores and excludes rules whose confidence scores are less
than minConf, with a default of 0.1.

Head coverage, standard confidence score, and PCA confidence score are
three ways to represent the inference power of a rule. Although these three
parameters can take other values than the default values, [4] does not suggest
to do so. Hence, our model utilizes the default parameter setting of AMIE~+.

3.2 Rule Instantiation

After rule mining is applied to get the inference relationship between triples, the
mined rules are instantiated to get grounded rules. As per the definition of rule
instantiation above, variables in each atom need to be instantiated by entities
in the KG such that these entities satisfy both the rule head and rule body.
As for rule Ry, in the second box from Fig. 1, the instantiating process can be
understood as sending a SPARQL SELECT query to the original KG in which
atoms in both the rule head and rule body are the graph patterns in this query.

The third box in Fig. 1 shows one example of the grounded rule for Rj. Note
that each mined rule is associated with four rule predication quality/correctness
measures: frequency, head coverage, standard confidence score, and PCA confi-
dence score. These measures can also be used in their grounded rules to indicate
the likelihood of correct predication.

3.3 Triple Inference Graph Construction & Weights Calculation

Given arule Ry, : By A By = Bs, one of its grounded rules is Ry : T1 ATy =
T3 with frequency frreq, head coverage frc, standard confidence score fewq, and
PCA confidence score fpeq. After applying rule mining and rule instantiation, we
are able to obtain the inferencing relationships between different triples. In order
to provide a holistic view of these rules and the relationships between triples, we
construct a triple inference graph based on these grounded rules from different
rules. Each triple (statement) is represented as a node and each directed edge
e;; from node T; to node 7} indicates that statement T; infers statement T}.
As for Ry; : 11 N Ty = T3, two edges can be obtained: e;3 from nodes
T1 to T3 and es3 from nodes To to T3. The weights of each edges are derived
from the four rule predication correctness measures frreq, fac, fewa, and fpeq-
Note that one triple 7} can be the rule heads of many grounded rules which
may or may not instantiated from the same rules. As for those grounded rules,
another triple T; can appear in the rule bodies of some of them. Let GR1, GRo,
..., GRy, ..., GR, be all grounded rules which are instantiated from the mined
rules from AMIE+. Let f1, fo, ..., fk, ..., fr be one rule predication correctness
measure from those four measures. All grounded rules should use the same type
of measures. Let Ly, Lo, ..., L, ..., L, be the rule lengths of those grounded
rules. a i is an indicator function to indicate whether triple T; appear in the
rule body of grounded rule GRy, («;; = 1 when T; is in the rule body of GRy;
0 otherwise). 3, is an indicator function to indicate whether triple T} is the
rule head of grounded rule GRy, (85 = 1 when T} is the rule head of GRy; 0

Learning Weights for Knowledge Graph Embedding Models 9

otherwise). Then the equation to calculate edge weight z;; of e;; from triple T;
to triple Tj is shown in Eq. 8.

- Ik
Zij = Zaikﬁjkm (8>
=1 .

Following the method above, we construct a secondary triple inference graph
based on those grounded rules. The third and fourth boxes of Fig. 1 illustrate
the graph construction process. In this triple inference graph, the more incoming
links a triple has, the more likely this statement is able to be inferred by other
statements which implies that this triple has less information, at least from an
information theoretic compression perspective. Information content is calculated
as the negative logarithm of the probability. The probability in this context is the
probability of inferencing a triple (statement) in our triple inference graph. In
order to obtain the inferencing probability of each triple in the graph, we model
it as a stochastic process and more specifically a Markov Chain. Each state in the
Markov Chain corresponds to a node in our graph and the transition probability
between states are determined by the number of links/edges and edge weights
between nodes. E.g., if there are 5 outgoing links/edges from node T; and one
of them connects to node 7}, then the transition probability from node T; to
T; is 0.2 if those 5 edges have equal weights. The stationary distribution of this
Markov Chain gives us the inferencing probability of each triple in the graph.

However, this method only works when the graph (Markov Chain) is strongly
connected, meaning every node can be reach from any other node in the graph,
otherwise the stationary distribution may not be unique. This requirement trans-
lated into our case would imply that every statement can be inferred by any
other statement, which is less likely to be true. Disconnected components, dan-
gling links and loops are common in our inferencing graph. To deal with these
cases, we use the PageRank algorithm which solves these issues by providing a
teleport probability which allows the random walker to jump to a random node
in the graph with a certain probability at each time step. In this case, the sta-
tionary distribution of the Markov Chain with the teleport probability becomes
unique again. We use this stationary distribution as our inferencing probability
to calculate the information content. Disconnected or isolated triples will have
a lower inferencing probability, thus possessing richer information content.

In this work, an edge weighted PageRank is applied to the constructed triple
inference graph. The final weight of each triple is calculated based on the PageR-

ank value PR; of each node/triple (See Eq. 9). Here %
ization factor to make the mean value of result triple weights to be 1.0.

#(S1)
> —loga(PR;)

is a normal-

w; = —loga(PR;) X (9)
3.4 Learning A Weighted Knowledge Graph Embedding Model

After obtaining the triple weights, we deploy a weighted KG embedding model
based on multiple existing models (TransE, TransR, and HolE). The train-

10 Mai, G. et al.

ing dataset is the observed triples in S*. The plausibility scoring function of
a triple T; = (h;,r;,t;) € ST with weight w; can be any scoring function of any
translation-based models (TransE, TransH, TransR, and TransD) or semantic
matching models (TATEC, DistMult, and HolE) as long as these models use
pairwise ranking loss functions to set up the learning task. The plausibility scor-
ing functions of TransE and HolE are shown in Eq. 1 and 4. We will denote the
weighted version of TransE, TransR and HolE as TransE-RW, TransR-RW and
HolE-RW.

To learn the KG embedding, we use the pairwise ranking loss function as
other models do. However, in the loss function, we multiply w; with the subtrac-
tion value between the plausibility score of triple T; = (h;, r;, t;) and the score of
one of T};’s corrupted triples T; = (h;,m,t;) (See Eq. 10). The intuition is that
as in the margin idea in support vector machine, the pairwise ranking function
aims to make the observed triples well separated from the corrupted triples in the
plausibility score space and f,.(h;, ;) — f (h;, t:) is a measure of the distinction
degree or distance for triple T;. Since different triples have different contribution
to the global information content of the KG, the loss function should consider
T; more if it has larger information content.

L= Z(hmti)ew Z(hmt;)es, [y + wi (fr(hasts) = fr(hint))] . (10)

(hisristy)

The set of corrupted triples for triples TZ/ = (h;, T4 t;) is constructed according
to Eq. 11. Two negative sampling methods are used: 1) replacing either the
triple’s head or tail entity with a random entity (denoted as unif.) and 2) the
negative sampling method proposed by [12] which uses head per tail h,pt, and
tail per head t,.ph,. (denoted as bern.). The second method will corrupt a triple by

replacing the head with probability % and corrupt a triple by replacing
o - hypt.
the tail with probability m.
Sthiritn) = {(hi,risti) | hy € E} U {(hi,7i,t;) | t; € E} (11)

As for TransE-RW, the same constraint as TransFE has been applied during
embedding model training which restricts the Lo-norm of the embeddings of
entities to be 1. It prevents the loss from being trivially minimized by enlarging
the norms of the embeddings of entities. We follow the same training process of
TransE. First, the entity embedding matrix E and relation embedding matrix
L are initialized by using uniform distribution uni form(—\/—%, \/%) where K is
the embedding dimension. Then, the relation embeddings are normalized before
the training process begins. In each iteration, Lo normalization has been applied
to entity embeddings before gradient decent. The adam optimizer is used for the
optimization. The same process is also utilized for HolE-RW.

4 Experiment

Two standard datasets - FB15K and WN18 - are used to evaluate all models.
FB15K and WN18 are standard datasets which have been used to evaluate KG

Learning Weights for Knowledge Graph Embedding Models 11

embedding models [1,12,5]. WN18 is extracted from WordNet in which entities
are word senses and relations correspond to the lexical relationships between
word senses. FB15K is a subset extracted from Freebase in which entities have
at least 100 mentions in Freebase and also appear in Wikilinks dataset. Given
the richer relational structure of FB15K, we expect a larger rule set, and, thus,
a more visible difference to the baseline due to the learned weights.

First, we calculate the weights for each triple in the training datasets of those
two datasets as described above. As for the rule mining step, we use AMIE+ 4 as
the rule mining system. Next, we construct the triple inference graphs based on
these mined rules and apply edge weighted PageRank. As expected AMIE+ was
able to identify substantially more rules for the Freebase dataset (41195) than
for WordNet (140). The triple weights for each triple from the training datasets
of FB15K and WN18 are calculated based on the PageRank values. Since there
are four types of rule predication correctness measures (frequency f¢req, head
coverage frc, standard confidence score fewq, and PCA confidence score fpcq),
four different triple inference graphs can be constructed for each dataset based
on different measures. This results in four different types of triple weights for
each dataset which are indicated by freq, hc, cwa, and pca. For each dataset, we
compute Spearman’s correlation coefficients between each pair of triples weights.
Table 1 and Table 2 show the Spearman’s correlation coefficients matrix of triples
weights on WN18 and FB15K. As can be seen from Table 1 and Table 2, the
calculated triple weights from different methods are highly correlated (at least
0.704 for WN18 and 0.788 for FB15K).

Table 1. Spearman’s correlation coef- Table 2. Spearman’s correlation coef-
ficients between weights calculated by ficients between weights calculated by
different rule predication correctness different rule predication correctness
measures on WN18 measures on FB15K

p freqhc cwa pca p freqhc cwa pca

fre¢1 0.704 0.899 0.879 freq1 0.788 0.877 0.855

he - 1 0.790 0.779 he - 1 0.805 0.848

cwa - - 1 0.889 cwa - - 1 0.972

pca - - - 1 pca - - - 1

The computed triple weights are used in TransE-RW, TransR-RW and HolE-
RW models as shown in Equation 10. To show the effectiveness of our weighted
model, we empirically evaluate TransE-RW, TransR-RW and HolE-RW together
with related models by using a common link prediction task on these stan-
dard datasets by following the evaluation protocol of [1]. Given a correct triple
Ti = (hg, 7k, tr) from the testing dataset of FB15K (or WN18), we replace
the head entity hj (or tail t;) with all other entities from the dictionary of
FB15K (or WN18). If there are n entities in the current dataset, this triple

4 https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/
research/yago-naga/amie/

12 Mai, G. et al.

corruption operation will result in n triples in which n — 1 triples are cor-
rupted triples together with the correct triple 7). The plausibility scores for
each of those n triples can be computed based on the plausibility score func-
tions of TransE, HolE (See Equation 1 and 4) and TransR-RW by using the
trained entity and relation embeddings. By ranking the scores in the ascend-
ing order, we can get the rank of the original correct triple Tj. Note that some
of the corrupted triples may also appear in the KG. For example, as for triple
(dbr:Santa_Barbara,_California, dbo:isPartOf, dbr:California), if we re-
place the head dbr:Santa_Barbara, _California with dbr:San_Francisco, the
result corrupted triple (dbr:San_Francisco, dbo:isPart0f, dbr:California) is
still in the DBpedia KG. These false negative samples need to be filtered out.
We report both the original rank and the rank after filtering out those false
negatives (denote as Raw and Filter). Aggregated over all triples in the test-
ing dataset of FB15K (or WN18), multiple metrics are reported: 1) the Mean
Rank; 2) the mean reciprocal rank MRR; 3) the proportion of ranks not larger
than K (denoted as HIT@K where K can be 1, 3, 10). A KG embedding model
with lower Mean Rank, higher MRR, and higher HIT@QK is better. Note that
different papers report different metrics. So we use different metrics for TransE-
RW, TransR-RW (Mean Rank, MRR®, and HIT@10) and HolE-RW (MRR,
HIT@1, HIT@3, and HIT@10) to make our results comparable to the related
models. RDF2VecGlove [2] also utilizes PageRank to facilitate RDF graph em-
bedding learning. However, it applies PageRank on the original KG while we
apply PageRank on the triple inference graph. RDF2VecGlove does not define
a plausibility scoring function for each triple which make it difficult to directly
apply RDF2VecGlove to the KG completion task.

We implemented the TransE-RW, TransR-RW and HolE-RW models using
TensorFlow. Hyperparameters are selected using grid search. The hyperparam-
eters we use for FB15K are: the embedding dimension K = 50, the margin
v = 1.0, distance norm d = L;, and learning rate o = 0.0001 for TransE-RW
(K =80, v=1.0,d= Ly, and a = 0.0001 for TransR-RW; K = 200, v = 1.0,
and a = 0.002 for HolE-RW). The hyperparameters we use for WN18 are: the
embedding dimension K = 20, the margin v = 2.0, distance norm d = L,
and learning rate o = 0.0005 for TransE-RW (K = 30, v = 2.0, d = L;, and
a = 0.001 for TransR-RW; K = 150, v = 1.5, and a = 0.00005 for HolE-RW).

Table 3 shows the link prediction results of TransE-RW and TransR® on
both Raw and Filter settings by comparing with other models. TransE-RW
outperforms other translation-based models on both Mean Rank and HIT@10
on both datasets, i.e., FBISK and WN18. As for FB15K, all of TransE-RW
models except TransE-RW .y, (bern) outperform TransE, TransM, and TransH
on HIT@10 with an improvement ranging from 8.23% to 47.98%.Even for
TransR, Most TransE-RW models shows a imporove over TransR on HIT@10
for FB15K. All TransE-RW models with unif negative sampling setting produce

® |7] points out that MRR is less sensitive to outliers than Mean Rank. So we also
report MRR in TransE-RW and TransR-RW
5 Note that we only implement TransR-RW on freq weight as an example.

Learning Weights for Knowledge Graph Embedding Models 13

Table 3. Link Prediction Result of TransE-RW and TransR-RW (unif indicates using
random negative sampling method; bern indicates using the method proposed by [12])

DataSet WN18 FB15K
Mean Rank MRR HIT@Q10 |Mean Rank MRR HITQ10

Metric Raw Filter |Raw Filter |Raw Filter|Raw Filter [Raw Filter |Raw Filter
TransE [1] 263 251 - - 75.4 89.2 (243 125 - - 34.9 47.1
TransM |3] 293 281 - - 75.7 85.4 (197 94 - - 44.6 55.2
TransH (unif.) [12] 318 303 - - 75.4 86.7 (211 84 - - 42.5 58.5
TransH (bern.) [12] 401 388 - - 73.0 82.3 (212 87 - - 45.7 64.4
TransR (unif.) [5] 232 219 |- - 78.3 91.7 (226 78 - - 43.8 65.5
TransR (bern.) [5] 238 225 - - 79.8 92.0 (198 77 - - 48.2 68.7

TransE-RWieq (unif.) {298 286 [0.361 0.487 |77.8 91.4 (216 69 0.225 0.422 |46.8 69.4
TransE-RWieq (bern.)|231 219 |0.391 0.516(78.1 91.0 |243 144 |0.252 0.424 |49.4 67.8
TransE-RWy, (unif.) |266 253]0.371 0.496 |77.1 90.7 |212 67 0.226 0.420 |46.8 68.8
TransE-RWy. (bern.) (272 260 |0.377 0.495 |77.3 89.8 |235 134 |0.258 0.444 |50.2 69.6
TransE-RWewa (unif.) {281 269 [0.359 0.483 |77.0 90.8 |213 67 0.225 0.418 |47.0 69.0
TransE-RWewa (bern.)|277 265 [0.378 0.486 |75.4 86.8 |245 149 |0.241 0.386 |47.2 63.4
TransE-RWyca (unif.) (292 279]0.353 0.472 |76.2 89.6 (217 71 0.227 0.423 |47.1 69.7
TransE-RWpca (bern.) [318 305 [0.375 0.484 |75.4 86.9 (232 132 |0.256 0.445|50.1 69.7
TransR-RWgeq (unif.) [351 336 [0.319 0.448 |77.8 93.4 (230 76 0.173 0.356 |44.2 67.1
TransR-RWgeq (bren.)|320 306 [0.326 0.442 |78.0 92.0 (196 74 0.230 0.426 |48.3 69.3

lower Mean Rank than the baseline models like TransE, TransM, TransH, even
TransR with improvement ranging from 7.79% to 12.99. As for WN18, all of our
models except TransE-RW .y, (bern) out perform TransE, TransM, and TransH
on HIT@10 with improvement ranging from 2.46% to 11.06% while have a
slightly lower HIT@10 than TransR. TransE-RW feq (bern) produces the lowest
Mean Rank than all other models, while other TransE-RW produce comparable
results on Mean Rank compared to TransE, TransM, and TransH. The results
for WN18 are dominated by the very small set of inferred rules. In general,
KG are expected to be similar to Freebase, DBpedia, Wikidata, and so forth, for
which TransE-RW yields substantial improvements over all baselines. We report
WordNet results here to stay in line with the literature. Note that TransR has
much higher time complexity (O(n.K + n,.K + n,.K?)) compared to TransE
(O(ne.K +n,K)). We demonstrate that by including the weighted strategy, even
the most simple model such as TransE can outperform a much more complex
model such as TransR. To demonstrate the generalization of our weight method,
we also implemented TransR-RW peq (unif.)/(bern.). Compared to the original
TransR, TransR-RW geq (bern.) provide lower Mean Rank and higher HIT@10
for FB15K and higher HIT@10 for WN18. The only metric TransR-RW does
worse than TransR is Mean Rank for WN18 while TransE-RW geq (bern) can
beat TransR on this metric. Compared to TransE-RW, TransR-RW does not
show a substantial improvement.

Similar to [1,12], we classify the relations into 1-to-1, 1-to-n, n-to-1, and
n-to-n categories according to the head per tail h,pt, and tail per head t,ph,
values of each relation. We classify the left side or right side to 1 or n according
to the fact whether h,.pt, (left side) and ¢.ph, (right side) is less than 1.5. For
example, a given relation is classified as 1-to-n if its h,pt, value is less than

14 Mai, G. et al.

Table 4. Link prediction results of TransE-RW on FB15K by relation categories

Task Predicting head (HITS@10)|Predicting tail (HITSQ10)
Relation Category 1-to-1 1-to-n n-to-1 n-to-n |1-to-1 1-to-n n-to-1 n-to-n
TransE [1] 437 657 182 472 |43.7 197 66.7 50
TransM [3] 76.8 86.3 23.1 523 76.3 29 85.9 56.7
TransH (unif.) [12] 66.7 81.7 30.2 574 63.7 30.1 832 60.8
TransH (bern.) [12] [66.8 87.6 28.7 64.5 65.5 39.8 83.3 67.2
TransE-RWgeq (unif.) [75.5 88.5 375 70.3 |74 41.6 865 72.7
TransE-RWgeq (bern.)[81.1 92.6 27.5 68.2 788 344 92 71.3
TransE-RWy, (unif.) [74.1 88.9 39.1 69 73.7 42 86.6 718
TransE-RWy (bern.) [81.9 93.8 30 70.1 78 36.5 93.1 73.4
TransE-RWy, (unif.) |75 89.2 38.1 694 74.9 42 87.6 T71.9
TransE-RWey, (bern.)|77.7 90.2 23.9 63.2 74.8 29.3 90.5 66.6
TransE-RWpea (unif.) [75.2 89.2 385 70.2 74.5 43.0 87.2 728

1.5, while its t,.ph, value is larger than or equal to 1.5. After classifying the
relations into these four categories, we aggregate the HIT@1(0 by each category
for head prediction and tail prediction of TransE-RW on FB15K. Table 4 shows
the results of TransE-RW and compare them with the results from other models.
We can see that our TransE-RW models outperform other models on HIT@10
for every relation category in both head and tail prediction.

Table 5. Link prediction results of HolE-RW

DataSet WN18 FB15K

MRR
Filter Raw |1 3 10
0.938 0.616 |93 94.594.9
0.941 0.587 [93.6 94.5 94.7
0.91 0.624 [89.5 92.1 93.4
0.913 0.645 |89.5 92.7 94.0
0.932 0.688 |92.3 93.6 94.5
0.922 0.686 |90.8 93.2 94.1
0.942 0.693(93.5 94.5 95.5

HIT MRR
Filter Raw |1
0.524 0.232 |40.2
0.692 0.242 |59.9
0.702 0.699 |69.0
0.675 0.671 |65.8
0.646 0.64 |62.5
0.705 0.699 (69.2
0.695 0.692 |68.3

HIT
3

61.3
75.9
70.0
67.5
64.4
70.4 72.6
69.3 71.6

Metric 10

73.9
84

72.1
70.6
68.2

HolE

ComplEx
HolE-RWgreq (unif.)
HolE-RWgeq (bern.)
HolE-RWh,. (unif.)
HolE-RWy,. (bern.)
HolE-RWcwa (unif.)

HolE-RWcwa (bern.)
HolE-RWc. (unif.)
HolE-RWyca (bern.)

0.922 0.684
0.931 0.686
0.926 0.688

91.0
92.3
91.4

93.2 93.9
93.7 94.5
93.5 94.4

0.791 0.788
0.635 0.63
0.756 0.754

78.1 79.0 81.1
61.5 63.4 67.1
74.6 75.4 77.3

We also report HolE-RW performance on the link prediction tasks and com-
pare it with HolE and ComplEx. HolE-RW ., (bern.) outperforms HolE and
ComplEx by at least 14.3% for MRR, about 4.1% for HIT@3, and about 30.4%
for HIT@1 on FB15K. HolE-RW .y, (bern.) and HolE-RW,,¢, (bern.) can out-
perform HolE for HIT@10 on FB15K while ComplEx has the best performance.
As for WN18, HolE-RW_ .y, (unif.) can outperform both HolE and ComplEx
on almost all the metrics while ComplEx outperform it by 0.1% on HIT@1. As
discussed above, few rules can be derived from WN18 and HolE and ComplEx al-
ready achieve 90%-+ performance. Hence, we do not see a large change on WN18.

Learning Weights for Knowledge Graph Embedding Models 15

5 Conclusion

In this work, we proposed a bottom-up method to measure the information
content of each triple with respect to the whole knowledge graph and implement
weighted knowledge graph embedding models based on the idea that not all
triples should be weighted equally. Instead, triples that can be used to infer other
triples offer support for those, thereby also decreasing their information content.
We applied rule mining to derive the inference structures of a knowledge graph
and to construct a secondary, directed, weighted graph based on these support
relations and their confidence. Next, we apply an edge-weighted PageRank (PR)
to this secondary graph to get a centrality score of each triple and then compute
its information content as —log(PR;). To demonstrate the effectiveness of the
weighting, we modifed three popular models from different KG embedding model
groups and performed link prediction on two standard datasets. The results
show that our TransE-RW models outperform other models including TransE,
TransM, TransH, and TransR by at least 12.98% for Mean Rank and 1.45%
for HIT@10 on FB15K. HolE-RW outperforms HolE and ComplEx by at least
14.3% for MRR and about 30.4% for HIT@1 on FB15K.

References

1. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. In: Advances in neural information
processing systems. pp. 2787-2795 (2013)

2. Cochez, M., Ristoski, P., Ponzetto, S.P., Paulheim, H.: Global RDF vector space
embeddings. In: ISWC. pp. 190-207. Springer (2017)

3. Fan, M., Zhou, Q., Chang, E., Zheng, T.F.: Transition-based knowledge graph
embedding with relational mapping properties. In: Proceedings of the 28th Pacific
Asia Conference on Language, Information and Computing (2014)

4. Galarraga, L., Teflioudi, C., Hose, K., Suchanek, F.M.: Fast rule mining in onto-
logical knowledge bases with amie 4+ +. The VLDB Journal 24(6), 707-730 (2015)

5. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings
for knowledge graph completion. In: AAAI vol. 15, pp. 2181-2187 (2015)

6. Mai, G., Janowicz, K., Yan, B.: Combining text embedding and knowledge graph
embedding techniques for academic search engines. In: SemDeep-4 (2018)

7. Nickel, M., Rosasco, L., Poggio, T.A., et al.: Holographic embeddings of knowledge
graphs. In: AAAL pp. 1955-1961 (2016)

8. Nickel, M., Tresp, V., Kriegel, H.P.: A three-way model for collective learning on
multi-relational data. In: ICML. vol. 11, pp. 809-816 (2011)

9. Paulheim, H.: Knowledge graph refinement: A survey of approaches and evaluation
methods. Semantic web 8(3), 489-508 (2017)

10. Trouillon, T., Dance, C.R., Gaussier, E., Welbl, J., Riedel, S., Bouchard, G.: Knowl-
edge graph completion via complex tensor factorization. The Journal of Machine
Learning Research 18(1), 4735-4772 (2017)

11. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: A survey
of approaches and applications. IEEE Transactions on Knowledge and Data Engi-
neering 29(12), 2724-2743 (2017)

12. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating
on hyperplanes. In: AAAIL vol. 14, pp. 1112-1119 (2014)

