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Abstract. With the increasing success and commercial integration of
Volunteered Geographic Information (VGI), the focus shifts away from
coverage to data quality and homogeneity. Within the last years, several
studies have been published analyzing the positional accuracy of fea-
tures, completeness of specific attributes, or the topological consistency
of line and polygon features. However, most of these studies do not take
geographic feature types into account. This is for two reasons. First,
and in contrast to street networks, choosing a reference set is difficult.
Second, we lack the measures to quantify the degree of feature type mis-
categorization. In this work, we present a methodology to analyze the
spatial-semantic interaction of point features in Volunteered Geographic
Information. Feature types in VGI can be considered special in both, the
way they are formed and the way they are applied. Given that they re-
flect community agreement more accurately than top-down approaches,
we argue that they should be used as the primary basis for assessing
spatial-semantic interaction. We present a case study on a spatial and
semantic subset of OpenStreetMap, and introduce a novel semantic sim-
ilarity measure based on the change history of OpenStreetMap elements.
Our results set the stage for systems that assist VGI contributors in
suggesting the types of new features, cleaning up existing data, and in-
tegrating data from different sources.

1 Introduction

The rise of Volunteered Geographic Information (VGI) as coined by Goodchild[1]
is closely tied to projects such as OpenStreetMap (OSM)1 or Wikimapia2. These
projects provide open platforms for volunteers to contribute geographic data and
make them accessible for others under an open license. Volunteered information
1 http://www.openstreetmap.org
2 http://wikimapia.org/



is acquired and maintained in a different style compared to data provided by pro-
fessional authorities. Instead of being defined in a top-down manner, geographic
feature types in OSM are the result of informal and continuous discussions within
the community3. Consequently, contributors assign different category tags to
features of similar types depending on their local VGI community, previous ex-
perience, used software, personal cognition of geographic space and changes of
the OSM typing schema. Due to these factors, tags representing feature types
change frequently.

With the increasing success of VGI and its integration with projects such
as Wikipedia or even commercial products, quality control becomes equally im-
portant to mere coverage. Several researchers have studied the quality of Vol-
unteered Geographic Information over the last years [2–4]. Tools assisting users
in constraint checking, attribute enrichment, or the cleaning of large data sets
become more important [5–7]. However, most studies do not take geographic
feature types into account. In contrast to assessing data quality based on street
networks or buildings, choosing reference data for feature types is difficult. Com-
mercial routing data sets can be used to discover missing, dis-placed, or attribute-
incomplete streets. Similarly, aerial photography or topographic maps can be
used as references for features such as buildings or water bodies. There is no
such gold standard for Points Of Interest (POI) feature types such as Restau-
rant, Pub, or Theater. Arguing that a feature tagged as Pub is mis-categorized
because it is specified as Bar in a commercial data set is troublesome. This
problem is not specific to VGI but a long term challenge in harvesting data
across multiple gazetteers. Geo-ontologies have been proposed to make the var-
ious typing schemata explicit. Besides reference data for comparison, analyzing
the usage of feature types in VGI requires measures to quantify the degree of mis-
categorization. For instance, confusing pubs with bars is different from tagging
a grocery store as a pub. Semantic similarity has been proposed as a measure to
determine the difference between feature type definitions [8].

Analyzing the usage and implicit meaning of feature type tags is more than
just an academic exercise. Intuitively, we expect a pub to be surrounded by
other places that afford drinking alcohol, having a snack, or meeting friends,
even though not all of these functions need to be offered by each facility. A waste
basket, on the contrary, can be expected to be uniformly distributed within a
commercial zoning area. The knowledge which types of features clump together
and which most likely do not, can be used to improve VGI. A contributor up-
loading a fire station POI next to an existing one, may be automatically notified
by the user interface that this type of features is not likely to clump together
and asked to double check. Using similarity measures, such point patterns can
also span the semantic dimension. Pubs are likely to occur next to nightclubs
and cafés, but rather unlikely to be grouped around nursing homes. Discover-
ing whether a specific feature, such as a point of interest, is already present
before it gets duplicated by another contributor would free the resources of
many volunteered editors that constantly work on cleaning up OpenStreetMap

3 http://wiki.openstreetmap.org/wiki/Map_Features



data. Similarly, these editors also change category tags to make them match
the latest community agreements or ensure that taxonomies are not confused
with partonomies. Such assistant tools and rule systems have been frequently
described as the next step in understanding and making use of VGI [4, 9, 10]. To
assist users by suggesting the most likely feature type tags, or notify them if a
similar feature already exists in the vicinity, requires the understanding of the
spatial as well as the semantic patterns in OSM. In this work, we set the theo-
retical ground for developing such assistant tools. We present a spatial analysis
methodology that identifies spatial-semantic patterns in OSM data and high-
light how our approach can be used for tag recommendation and data cleaning.
In contrast to existing work on geospatial semantics, we do not require a top-
down ontology of geographic feature types, but derive feature type similarity
bottom-up from the change history of existing OSM data.

The remainder of this paper is structured as follows. In section 2 we review
statistics and measures that underlie our approach. Section 3 describes the devel-
opment of concept variograms and spatial-semantic point pattern analysis. Both
methods require semantic similarity values between feature types. The procedure
of deriving these similarities in a bottom-up fashion from OSM data is explained
in section 4. After giving an overview of the data set used for the case study
(section 5) we describe the results (section 6) and discuss their implications (sec-
tion 7). Finally, in section 8, we conclude by summarizing our work and point
out directions for further work.

2 Related Work

This section introduces the statistical underpinning for our spatial-semantic in-
teraction methodology and points to related work on semantic similarity mea-
surement relevant for the understanding of our research. The geostatistics used
in our methodology are well-established within the field of Geographic Infor-
mation Science. In case of VGI, however, we lack this kind of well-established
approaches. Kuhn [11] uses the hot water metaphor to picture the urgent need
for models specialized on VGI. VGI represents a catalyst, or hot water to GI-
Science once it is well understood and handled. Both directions of research, the
understanding and the handling of VGI need to be integrated. This work is
meant to be part of that integration task. In contrast to a social [12] or pro-
ducer -centered [13] view on the topic, we aim at forming a computational basis
for the interpretation of VGI datasets.

2.1 Spatial Analysis

Variograms plot the expected difference between the values measured at two
different locations versus their spatial distance. It is applied to describe the
spatial dependency of continuous processes. Ahlqvist and Shortridge [14] argue
that such a process can also underlie categorical variables like land use classes
and introduce semantic variograms to analyze landscape heterogeneity. To do



so, they replace the differences between observed numerical variables by a look-
up table containing semantic similarities (usually values within the range [0, 1])
for each pair of categorical land uses values. The semantic semivariance is then
defined as a function of distance (or lag) h; see equation 1:

γSD(h) =
1

2N(h)

N(h)∑
α=1

sd [c (uα) ; c (uα + h)]
2 (1)

where N is the number of location pairs separated by spatial lag h, while
sd [c (uα) ; c (uα + h)] is the semantic distance between the categorical land use
value of points uα and uα + h from the look-up table.

Even though point data as well as grids may underlie the computation of
variograms, they model fields and not point patterns. Variograms are used to
interpolate values between measurement points, e.g. using Kriging [15], whereas
the distribution of the measurement points as such is not targeted.

Point Pattern Analysis aims to reveal whether points in a study area are, e.g.,
clumped, randomly, or regularly distributed. A popular model for a stationary
spatial point process is Ripley’s K [16]; see equation 2:

K (s) = λ−1E (2)

where E is the number of occurrences within distance s of an arbitrary point
and λ is the the intensity, i.e., the expected number of points, overall density,
or average occurrence rate respectively [17]. The function is monotonically non-
decreasing [17]. Hence the minimal increase of 0 between two distances s1 and
s2 means that no additional points are expected when increasing the radius by
s2 − s1 with regard to an arbitrary point. Accordingly a strong increase up to
a distance sx indicates a clustering within this radius. There are superimposed
functions that ease visual interpretation of thresholds like sx (cp. the L index or
the linearized version of Ripley’s K respectively [18]). However, for a comparison
of expected versus observed occurrences this additional step is not necessary.

To our best knowledge, there is no existing methodology to account for se-
mantic aspects in addition to the spatial distribution of point patterns. However,
Diggle et al. [19] introduced a second-moment spatio-temporal measure for point-
processes in which the spatio-temporal occurrence is called an event; see equation
3:

K (s, t) = λ−1E (3)

where E is the number of events occurring within distance s and time t of an
arbitrary event, and λ is the intensity, i.e., the expected number of events per unit
space per unit time. Following the spatial definition of Ripley’s K, the estimator
K̂ (s, t) [19] can be computed from existing data by equation 4:

K̂ (s, t) = |A|T (n (n− 1))
−1 ∑

j 6=i

wijvijI (dij ≤ s) I (uij ≤ t) (4)



where |A| is the area of a polygon enclosing the spatial domain of interest, T the
analogous temporal interval. n is the number of points, I the indicator function
and dij and uij are the spatial and temporal differences. wij ,vij are weights
applied for the correction of edge-effects.

As diagnostic measure for the actual strength ofK (s, t), Diggle et al. propose
the functions 5 and 6.

D̂ (s, t) = K̂ (s, t)− K̂ (s) K̂ (t) (5)

D̂0 (s, t) =
D̂ (s, t)

K̂ (s) K̂ (t)
(6)

K̂ (s) and K̂ (t) are the independent spatial and temporal components of the
underlying point process. D̂ describes the absolute difference between the spatio-
temporal and an assumed independent spatial and temporal process, D̂0 its
magnitude with regard to an expected number of occurrences in a spatial- and
temporal-only process. Space-time interaction is therefore described as a space-
and time-dependent factor that measures the influence of the combined point
process versus the independent point processes.

2.2 Semantic Similarity

Due to their analogy to spatial proximity functions, semantic similarity mea-
sures have been widely studied and applied in GIScience [20, 21, 14, 22, 8, 23].
Most of these measures are hybrid in a sense that they combine different ap-
proaches to similarity, such as features, regions in a multi-dimensional space,
or network distances. However, these approaches rely on existing ontologies or
scene graphs for comparison. The OSM data set discussed in this work lacks
a formal specification of feature types. It also does not support multiple types
per feature which excludes classical bag of words approaches. In contrast to such
set-theoretic approaches, Eck et al. [24] identified probabilistic measures, the as-
sociation strength in particular, as adequate for normalization purposes because
it measures the deviation of observed from expected co-occurrences. Set-theoretic
measures like the inclusion index or the Jaccard index return the relative overlap
of two sets, still being prone to the absolute number of tags in each of the sets
[24].

The association strength, proximity index, or probabilistic affinity index,
respectively [25–27], is the ratio of the observed number of co-occurrences cij and
the expected number of co-occurrences eij between tags i and j; see equation 7:

eij =
sisj
m

(7)

si and sj are the total numbers of occurrences for each, i and j, and m is the
total number of documents or bag of words respectively. For

simAS =
cij
eij

(8)



greater than 1 the number of co-occurrences is higher than expected for assumed
statistical independency, lower otherwise.

3 Two models for spatial-semantic interaction

In this section we explain the changes applied to semantic variograms and the di-
agnostic measure D̂0 related to spatio-temporal point processes. While semantic
variograms reflect a field view on geographic space where point features are only
considered measurement locations for a spatial process such as land cover, Dig-
gle’s diagnostics are based on the model of a point process where the distribution
of occurrences in two dimensions is the only relevant information.

Semantic variograms have been used to study land cover grids so far. The
combination of semantics with variogram is reasonable in this case because land
cover is present at any location. Despite the limited amount of classes, the un-
derlying process can be considered continuous. When applying variograms to
points of interest, those properties are not given anymore. Given a subset of
POI, e.g. amenities, most of the space in between would be void or of no rel-
evance to amenities. Even more, the amenities themselves are not modeled as
two-dimensional features. Variograms by nature do not allow for these kinds of
situations, because the process to be modeled is considered ubiquitous.

Nevertheless, beyond those theoretical reservations, the computation and
careful interpretation of variograms is possible and straightforward compared
to the D̂0 statistic. Investigating both approaches gives us the chance to under-
stand their limitations and which patterns they help to uncover.

Fig. 1. Workflow of the spatial-semantic interaction analysis.

Fig. 1 shows the basic steps that precede the computation of our spatial-
semantic interaction models. Concept variograms and second-order analysis both
require spatial and semantic distances as input data. In our work, the semantic
distance is derived from a similarity matrix which also defines the POI to be
selected for analysis.



All computations were performed by the statistical language R4. In particular
we modified functions from the gstat 5 and the splancs6 packages.

3.1 Concept Variograms

For the characterization of a certain concept ck, or categorical value, respec-
tively, we aim at extracting only those spatial-semantic relationships that are
relevant for ck. We achieve this by applying the following change to the seman-
tic variogram definition (cp. section 2):

γckSD(h) =
1

2N(h, ck)

N(h,ck)∑
α=1

sd [c (uα) ; c (uα + h)]
2 (9)

where N(h, ck) is the number of point pairs separated by spatial length h and
fulfilling the condition c (pi) ∨ c (pj) = ck for each point pair (pi, pj). Therefore
γckSD(h) can be either considered a semantic-enabled version of Goovaerts’ indi-
cator variograms [28] or a restricted form of the semantic variogram definition
by Ahlqvist et al [14].

3.2 Second-order analysis of spatial-semantic clustering

The modifications applied to the second-moment spatio-temporal measure for
point-processes by Diggle et al.[19] consist of replacing the temporal by a se-
mantic component as well as restricting the point-pairs contributing to K to
those that at least have one point with value sk. We also changed the notion of
E to the more neutral term occurrence since event only applies to the temporal
domain. The altered K-function is then given by:

Kck
SD (s, sd) = λ−1Eck (10)

where SD is the semantic distance matrix in use, sd the semantic distance, ck
the selected concept and Eck the number of further occurrences within spatial
distance s and semantic distance sd with respect to occurrences having the
categorical value ck. Accordingly, we propose the following as an estimator for
function (10):

K̂ck
SD (s, sd) = |A|SDrange (nck (n− 1))

−1∑
j 6=i

wijI (dij ≤ s) I (sd [c (pi) ; c (pj)] ≤ sd) I (c (pi) ∨ c (pj) = ck) (11)

where SDrange is the range of semantic similarity values in the look-up table
and nck is the number of points with c (pi) = ck. Note that no correction of
4 http://www.r-project.org/
5 http://www.gstat.org/
6 http://www.maths.lancs.ac.uk/∼rowlings/Splancs/



edge-effects (vij in K̂ (s, t)) is applied to the categorical values due to a lack of
metrical spaces for this kind of pair-wise distances. Hence, the notion of an edge
is not meaningful here. In that regard another modification has to be applied. In
contrast to time, semantic distance has a fixed range, usually values from [0, 1].
Since we want to examine the whole semantic range of the D̂0 statistic, the case
of POI having a maximum dissimilarity of 1 needs to be addressed separately.
Reaching this value, all remaining POI are added to K̂ck

SD (sd) and consequently
D̂0 becomes 0. Thereby, those values within the last similarity interval would be
ignored automatically. The traditional approach does not face such issue because
the spatial or temporal dimension is seldom captured up to the maximum of the
dataset. For semantic distances, however, we define SDrange as an open interval
[0, 1).

To get a better understanding of how the D̂0 statistic reflects the underlying
spatial-semantic interaction, we created different simulated point patterns based
on a simple four-step similarity scale for a test concept ck. Out of those we show
two patterns and their corresponding plots in fig. 2. In the following they will
be called pattern Pattern A (upper) and pattern Pattern B (lower).

Pattern A represents perfect spatial-semantic autocorrelation - perfect in the
sense that spatial distance to instances of ck (light red dots) is always relative
to the semantic distance. Since semantic similarity decreases in both spatial
dimensions, outgoing from the four ck POI, we observe a quadratic drop in the
D̂0 plot. In the following, we focus on the high D̂0 values in the two-dimensional
(spatial-semantic) interval of [0, 0], [1, 0.3], i.e., the values within spatial distance
0 - 1 and semantic distance 0 - 0.3. The expected number of co-occurrences in
this interval is low. One the one hand, there is no spatial clustering around ck
POI; the distribution of all POIs is regular. On the other hand, the fraction of
POIs of type ck is only 4%. In other words, in a random distribution of the very
same set of points it would be quite unlikely that ck POI would appear right
next to each other. However, in the observed distribution ck only occurs as a
single cluster. The D̂0 plots shows that this phenomenon is 20 times more likely
to be characteristic than a random distribution. However, as soon as we extent
the spatial-semantic interval in either dimension this factor decreases: finding ck
POI within a special distance of 2 is more probable than within distance 1, and
finding ck as well as similar POI (dissimilarity 0.33) is more probable than only
ck POI within distance 1.

Pattern B is a counter-example for spatial autocorrelation. First, ck POI do
not form spatial clusters themselves, second the surrounding POI are mostly
dissimilar. Hence, D̂0 has negative values in the spatial and semantic proximity
of ck POI, i.e., the independent spatial and semantic clustering is stronger than
the combined point process. There are two clusters where medium similarity
appear only next to a ck POI. Therefore, D̂0 is highest for POI with medium
similarity.

This behavior is important for our analysis with regard to VGI and Ge-
ographic Information in general. The total occurrences of feature types in a
geo-dataset may vary for several reasons, e.g., different interests of voluntary



Fig. 2. D̂0 plots for two different spatial-semantic patterns. Light red dots indicate
instances of the concept ck to be examined.

mappers, heterogeneous coverage, or ground truth. The interaction signature
of a geographic feature type, however, should not be biased by the number of
instance occurrences because these do not play a role on the conceptual level.
Pattern B shows that in the domain of a particular geo-dataset the D̂0 statis-
tic accounts for the diagnosticity of feature types, i.e., features within a certain
similarity range, here 0.3 to 0.6.

Finally, note that the D̂0 plots would look exactly the same except from the
last semantic interval dropping to 0 if POI with dissimilarity 1, i.e., no similarity,
would have been incorporated. By not doing so, we are able to visualize the
semantic interval (0.9, 1.0) and show that no change occurs there compared to
the interval (0.7, 0.9]. Points of interest with no similarity still have strong effect
on D̂0 though, because they affect interaction trends of the spatial axis through
K̂ (s) (cp. eq. 5 and 6).



4 Deriving similarity from the OpenStreetMap history

Introducing semantics into geostatistical models is a key contribution of this
work. However, we cannot derive similarity values from formal feature types as
these do not exist for VGI and, therefore, have to assess pair-wise similarities
between each type.

Our case-study is restricted to a particular subset of elements in OSM, namely
those that have a key called amenity. A key in OSM can be considered a su-
perconcept, its values the subconcepts. Currently the community agrees on 71
different amenity values described in the OSM wiki7. By convention these key-
value pairs are meant to be applied uniquely, i.e., an OSM node is not supposed
to have more than one amenity tag. Therefore, we cannot use bag-of-words-
based similarity measures between different amenity values. Instead, we obtain
the history set (in form of a bag of words) for each OSM element. OpenStreetMap
offers diff files which list all elements that were subjects to change, i.e., creation,
modification, or deletion, within a certain time frame.

We use this diff function to compute the history set for all elements. For
instance, an element x that was created as a cafe, then changed to restaurant,
then changed back to cafe, and finally labeled bar, would contain the tags
cafe, restaurant, and bar as a bag of words. The number of changes or their
sequence is not recorded. For our similarity measure, we assume that such type
changes occur due to semantic confusion of types by VGI contributors. Based
on the history sets, we create a co-occurrence matrix C with cij containing the
number of elements that have been both, tag i and tag j during their history.
The diagonal entries of C contain the total number of i / j elements.

Next, we apply the association strength measure to compute the expected
number of co-occurrences (cp. eq. 8). In order to get values within [0, 1], simAS

is normalized following equation 12):

sim = 1− 1

1 + simAS
. (12)

Maximum dissimilarity is marked by a value of 1, while maximum similarity
takes the value 0. A value of 0.5 reflects statistical independency.

5 Data and Case Study

This case study examines amenities in London as a spatial-semantic subset of the
OpenStreetMap dataset. The semantic similarities of OpenStreetMap amenities
are derived from the whole world dataset to achieve a higher degree of signifi-
cance. In the following, we will describe the spatial and semantic components of
amenity points of interest.

7 http://wiki.openstreetmap.org/wiki/Map_Features#Amenity



5.1 Amenity points of interest in OpenStreetMap

Amenity POI may be mapped as nodes or ways in OpenStreetMap. In the
first case they are modeled as point features, as polygons otherwise. For our
case study, the bounding box for the London dataset is set to (51.4158,-0.331),
(51.6011,0.0796). Data was retrieved from OSM’s extended API (see requests 8).
All polygon features were converted to point features after retrieval by a centroid
function. Thereby, they can be used in our methodology and we do not loose
valuable information. The final dataset contains 20,765 POI with 64 out of 71
different amenity values being present. Table 1 shows their tag counts.

tag # tag # tag # tag #
arts_centre 50 atm 330 bank 464 bar 235
bench 219 bicycle_parking 1479 bicycle_rental 343 biergarten 3
bureau_de_change 20 bus_station 20 cafe 1273 car_rental 16
car_sharing 600 car_wash 15 cinema 61 clock 11
college 111 community_centre 62 courthouse 36 crematorium 1
dentist 77 doctors 144 drinking_water 10 embassy 61
fast_food 708 ferry_terminal 19 fire_station 68 fountain 46
fuel 201 grave_yard 16 grit_bin 18 hospital 97
kindergarten 42 library 171 marketplace 32 nightclub 56
parking 1225 pharmacy 275 place_of_worship 1356 police 89
post_box 3086 post_office 284 prison 6 pub 2556
public_building 121 recycling 397 restaurant 1855 sauna 1
school 1358 shelter 17 social_centre 1 social_facility 5
stripclub 1 studio 8 taxi 44 telephone 1274
theatre 111 toilets 214 townhall 19 university 107
vending_machine 3 veterinary 9 waste_basket 225 waste_disposal 3

Table 1. Numbers of amenity tags in the London dataset.

5.2 Semantic similarity of amenities in OpenStreetMap

The total number of features tagged with one of the 71 amenities values is
3,247,409, considering the whole world (state: February 2011). Out of these,
30,538 OSM elements have been subject to tag changes.

bar cafe cinema community_centre recycling theatre waste_basket
bar 16799 392 2 1 1 2 0
cafe 392 57343 6 1 10 5 3
cinema 2 6 11808 3 0 104 0
community_centre 1 1 3 2306 0 11 0
recycling 1 10 0 0 60309 2 122
theatre 2 5 104 11 2 11569 0
waste_basket 0 3 0 0 122 0 19976
Table 2. Examples for amenity co-occurrence in OpenStreetMap history sets.

For illustration purpose, table 2 shows a subset of the resulting co-occurrence
matrix. The diagonal entries show the total number of occurrences of the corre-
sponding element. The similarity values computed based on table 2 are shown
in table 3. Due to the low number of overall changes to the amenity dataset, we
8 http://xapi.openstreetmap.org/api/0.6/node[amenity=*][bbox=-0.331,51.4158,0.0796,51.6011],
http://xapi.openstreetmap.org/api/0.6/way[amenity=*][bbox=-0.331,51.4158,0.0796,51.6011]



tested each co-occurrence for statistical significance. The test was carried out as
a χ2 test of the 2x2 contingency table of each tag pair. While the test statistic
itself lacks features for semantic similarity, its p-value shows how reliable the
raw data is. It turns out that for 25.5% of all co-occurrences the strength of
association is not significant on a 95% confidence level. Therefore we assume
that our similarity measure has an accuracy of at least 74%.

bar cafe cinema community_centre recycling theatre waste_basket
bar 1 0.57 0.03 0.08 0 0.03 0
cafe 0.57 1 0.03 0.02 0.01 0.02 0.01
cinema 0.03 0.03 1 0.26 0 0.71 0
community_centre 0.08 0.02 0.26 1 0 0.57 0
recycling 0 0.01 0 0 1 0.01 0.25
theatre 0.03 0.02 0.71 0.57 0.01 1 0
waste_basket 0 0.01 0 0 0.25 0 1

Table 3. Selected normalized association strengths of OpenStreetMap amenities.

In general, and taking into account that these values have been automat-
ically derived from VGI without any pre-processing, the similarity values are
plausible. However, the number of completely dissimilar tags is higher than ex-
pected. For instance, the number of tags that have a similarity value lower than
0.1 is 59 for bar, 61 for cafe, 62 for cinema, 51 for communtiy_centre, 67 for
recycling, 56 for theatre, and 68 for waste_basket (from an overall number
of 71 amenity values). This leads to a coarse semantic granularity with respect
to similar category tags.

Additionally, the results are influenced by partonomic (e.g. for parking),
linguistic (e.g. bank and bench), and lexical relations (e.g. watering_place and
ferry_terminal). While partonomic relations may be considered a valuable
influence on semantic similarity between geographic features, we have to treat
the others as errors. Fortunately, in almost all cases, the linguistic or lexical
bias comes along with a strong semantic association, (e.g., for theatre and
cinema), or impacts tags that have a very low overall change rate (e.g. bench).
Nonetheless, this shows that semantic similarities computed out of such history
sets should not be applied without prior manual inspection. Finally, concept
variograms and point pattern analysis require a dissimilarity values. Therefore,
all values were inverted by dissimilarity = 1− similarity.

6 Results

This section presents the results of applying the concept variograms as well as
the spatial-semantic point pattern analysis to the OpenStreetMap POI data set
for London. Concept variograms and D̂0 statistics were created for all 64 amenity
tags. We selected four amenities, namely bar, cafe, post_office and theater
to show a spectrum of spatial-semantic interaction and possible interpretations.
Fig. 3 shows a map view of all POI in a narrower bounding box, where a warmer
color indicates higher similarity to a particular tag.



Fig. 3. Similarity values of four amenity tags in a subregion of the London OSM data.

The data set contains 235 bars, 1273 cafés, 284 post offices, and 111 theaters.
Whereas bars and cafés, as well as tags similar to them, are equally prominent
in the city center, theaters appear less often and only in a certain region with
similar tags. Post offices are regularly spread over the whole area and rarely
cluster with similar tags.

Analyzing the spatial autocorrelation with respect to semantic similarities
gives a first assessment of the qualitative differences between the four amenities;
see fig. 4. post_office and theatre show nearly no spatial autocorrelation.
An increase of semivariance can only be observed for bar and cafe up to a
distance of 300 m. post_office shows the lowest overall similarity, followed by
theater, cafe and bar. These values (on the y-axis) are called the sill of a
variogram. The range of all four variograms, i.e., the maximum distance up to
which spatial autocorrelation is observed, is roughly between 700 and 1000 m.
Therefore, we used the latter value as a threshold for the second-order analysis
of spatial-semantic interaction.



Fig. 4. Concept variograms for four amenity tags in the London dataset.

Fig. 5 shows D̂0 plots for the four selected amenities. Bars show spatial-
semantic interaction on small spatial and semantic scale, i.e., less than 300 m
and below 0.4 dissimilarity. The same applies to cafés regarding their spatial com-
ponent. The semantic tolerance for interaction appears to be higher than the one
for bars here. Theaters show a completely different pattern. The magnitude of
interaction highly correlates with spatial and semantic distance. Especially the
decrease of interaction in the spatial dimension is smoother for theatres than
for cafés and bars. Post offices differ from the other three amenities in showing
negative spatial-semantic interaction, i.e., the independent spatial and semantic
clustering is stronger than the spatial-semantic one. While dissimilar features
have zero interaction with post offices at any distance, negative interaction in-
creases for more similar and closer features. The strength of interaction in general
is high for bars and theatres and comparably low for cafes and post offices.

7 Discussion

In this section we discuss the results form the case study and focus on the in-
terpretation of the introduced spatial-semantic interaction models (section 7.1).
Subsequently four different application scenarios in the scope of VGI are pre-
sented (section 7.2).

7.1 Interpretation of the results

The examples in section 6 demonstrate that D̂0 plots have the potential of re-
vealing more information about spatial-semantic interaction than concept vari-



Fig. 5. D̂0 plots for four amenity tags in the London dataset showing the magnitude
of spatial-semantic interaction at different spatial and semantic scales.

ograms. They explicitly plot spatial-semantic interaction on both scales. There-
fore, we can observe that, e.g., bars cluster only with very similar amenities,
whereas cafés seem to appear in a more diversified environment. Post offices
are regularly spaced, primarily with themselves but also with slightly dissimilar
features like post boxes. This results in negative spatial-semantic interaction as
it occurs in Pattern B (cp. section 3). From the D̂0 plot we can observe that
it is more characteristic for post offices to be surrounded by dissimilar than by
similar features - due to their public supply function they appear in all kinds of
environments.

Theaters seem to be clustered with similar amenities on a much higher spatial
and semantic scale that is not captured by the corresponding concept variogram.
Nevertheless, theaters can be considered the same interaction type as cafés and
bars, if examined on a smaller spatial scale; see fig. 5. Therefore, they correspond
to the prototypical distribution of Pattern A in section 3. In contrast to cafés and
bars, theatres only clump in London’s city center. Also similar amenities co-occur
with theaters under high diagnosticity even for greater distances. When forming
a spatial-semantic cluster of certain size, we can assume that a geographic feature
has a function that is related to the magnitude of the cluster. A cafe or bar may



be important to a block or certain street, whereas a theatre leaves its interaction
traces in the whole city center.

The concept variogram of theatres does not reflect the situation described
above. There are too many completely dissimilar POI that hide the contribu-
tion of similar ones to a possible smaller-scale cluster. This shows the advantage
of the point pattern analysis to incorporate the diagnosticity of POI within a
certain semantic range. Beyond that, we cannot consider POI to have an under-
lying continuous spatial process of theatreness. It is rather the spatial pattern of
theatres, intertwined with the spatial patterns of other amenities, that is char-
acteristic for the geographic feature type theatre. By comparing the results of
point pattern analysis and concepts variograms we are able to show that the
theoretical reservations mentioned in section 3 have practical relevance.

Fig. 6. D̂0 plot of theatres at a smaller scale.

The resolution of the semantic dimension was chosen according to the gran-
ularity of the similarity measure (i.e, in 4 intervals). However, the accuracy of
D̂0 is likely to increase if the semantic similarities are distributed over the whole
range of possible values. For example, the similarity of cafe to bbq and cafe
to dentist is 0, and intuitively that could be considered reasonable in terms
of their confusion possibility (which is underlying our similarity measure). How-
ever, keeping in mind that 0 is the minimal possible similarity we may want
to distinguish both cases when assessing semantics in general. So far, the sim-
ilarity measure applied is rather conservative. Dissimilar features are strongly
penalized, which results in coarser semantics. Consequently, D̂0 plots are not as
smooth as in the original spatio-temporal application proposed by Diggle.



7.2 Application of spatial-semantic interaction models in VGI

Concept variograms and second-order analysis represent the spatial-semantic in-
teraction signature of geographic feature types in a POI dataset. In section 7.1
we argue that the D̂0 statistics reveal more information than concept variograms.
Therefore, we will focus on application scenarios that use the second-order anal-
ysis. Their implementation as software remains future work.

Fig. 7. Second-order analysis in action: two candidates for car wash locations in London
are checked for plausibility by comparing their spatial-semantic interaction signature
with the existing one. The green dot is a real car wash location extracted from Google
Maps. The red dot simulates a duplicate tag. (map rendered by Quantum GIS, bound-
ing box: 51.501,-0.171; 51.557,0.023)

The basis for an application of interaction signatures in VGI is a plausibility
measure for an individual POI with respect to its feature type. Plausibility in
our terminology is different from probability in the sense that we do not aim
at predicting feature types in analogy to geostatistical interpolation. It can be



computed for an arbitrary location s and feature type ck based on the comparison
between the D̂0 statistic of a single POI with type ck at s and the D̂0 statistic of
all ck in the dataset. Fig. 7 shows a real world example of D̂0 plots. The second
plot represents the case of a candidate with low plausibility, the third a case
of high plausibility with regard to the first plot. Future work will focus on the
numerical comparison between D̂0 statistics of individuals and feature types as
well as their normalization in order to derive a meaningful plausibility measure.
Taking the above methodology as a starting point we envision the following
application scenarios:

Tag recommendation Selecting the appropriate tag is a common problem for
voluntary mappers. On the one hand, they want to reuse common tags to make
sure their POI will be found and rendered. Checking frequency statistics such as
taginfo9 for OSM can be helpful in that regard. On the other hand, contributors
want to use tags that best describe the corresponding real world entity. This
requires browsing and searching the used vocabulary and finally deciding on a
tag based on its textual description. With the D̂0 statistic we can add a criterion
such as “which tag is plausible at a certain location?”

Plausibility values for different feature types and arbitrary locations can be
ranked to suggest tags by comparing their interaction signature with the local
environment. Based on the assumption that the underlying dataset is of reason-
able quality, users will more likely select tags from the head of the ranking than
from its tail. Hence, the second-order analysis supports mappers by reducing the
semantic search space.

Data cleaning Plausibility can also be applied for cleaning up existing data.
Cases of very low plausibility may be forwarded to editors who can check for
duplicates or vandalism. For example, a post office tagged next to another post
office may be assigned a very low plausibility value, because of its high positive
D̂0 value in the near and similar spectrum (cp. section 7.1). It is more likely that
a mapper tagged the very same post office a second time. Fig. 7 depicts such an
example of duplicate identification for car wash locations.

However, the second-moment measure should be understood as decision sup-
port method for users rather than machine processing. There may still be cases
of close post offices that are correct, as well as duplicate bars in a neighborhood
of bars and nightclubs. The identification and removal of wrong or redundant
data can be guided by our measures but requires manual interaction.

Coverage recommendation In analogy to the reduction of the semantic
search space through tag recommendation, voluntary mappers can also be sup-
ported by reducing the search space in the literal sense. A tool that identifies
areas in which a certain feature type is likely to occur but not present in the
dataset could direct the mapping activities of volunteers to areas where coverage
9 http://taginfo.openstreetmap.org/



strongly differs by feature type. The possibility of making a valuable contribu-
tion can thereby be assessed beforehand. The scenario presented in fig. 7 can
be considered the result of coverage recommendation even though such service
would rather point to an area in the vicinity of the green dot than its exact
location.

Using the D̂0 statistic for coverage recommendation needs to cope with two
problems though. Firstly the influence of a feature type ck on its own inter-
action signature must be eliminated. Otherwise high plausibilities can only be
expected in the border regions of the area where ck is actually present. Secondly
the second-order analysis models a point process, in contrast to the result of a
coverage recommendation, which would be an area. Therefor a sampling of test
locations is needed that accounts for the density of instances of ck itself.

Uncovering implicit partonomy Given the huge amount of data, it becomes
difficult to evaluate how voluntary mappers tag specific locations in compar-
isons to others, i.e., what users tag in contrast to what they mean, in an aggre-
gated manner. For example, POI tagged as school could either represent school
grounds or school buildings. In the latter case it is likely that the regular spac-
ing on city-scale is accompanied by a strong clustering on the city-block-scale
(because several buildings jointly form the complex which is commonly consid-
ered a school). Whereas tag usage (in this example) could solely be revealed by
Ripley’s K, a spatial-semantic interaction model is required as soon as different
but similar types of schools, e.g., boarding school, public school, or elementary
school are present. D̂0 plots can uncover implicit partonomic assumptions that
should be made explicit by either proposing a new tag to the community or
providing better descriptions to be considered by mappers in the future. In the
car wash example (cp. fig. 7) the D̂0 plot shows no clustering with similar POI.
The red dot can be identified as a duplicate, because car wash facilities are not
modeled as building complexes by VGI contributors.

8 Conclusion

In this paper we describe a methodology to characterize the spatial-semantic
interaction of points of interest in OpenStreetMap. Inspired by Diggle’s [19]
second-moment spatio-temporal measure, we combine point pattern analysis
as originally proposed by Ripley’s [16] with semantic similarity. The resulting
spatial-semantic interaction is a measure for the likelihood of features of a cer-
tain type to co-occur within a certain semantic and spatial range. The feature
type similarities required for our work are not computed from top-down geo-
ontologies, but automatically generated bottom-up based on the change history
of OpenStreetMap elements. Our methodology sets the theoretical ground for
tools to support users in contributing and cleaning up VGI. Users contributing
new features may get automatic feature type recommendations based on the
location of the new POI and the spatial-semantic interaction within its vicinity.



Features that are unlikely to co-occur with other features may be discovered and
forwarded to editors.

At the same time, our work has implications on geospatial semantics research
in general and geo-ontologies in specific. Instead of aiming at top-down domain
ontologies that describe feature types such as pubs by characteristics like having
tables, walls, or menus, we argue for a local, bottom-up approach based on their
spatial and temporal characteristics. Pubs clump together with other features
such as nightclubs or cafés and while they may have different opening hours, they
are between those of cafés and nightclubs. Both approaches do not contradict
and should be combined. However, it is rather space and time that shape our
conceptualization of the world than bags of attributes [29]. As a long-term vision,
by examining patterns of spatial-semantic (and temporal [30]) interaction, we
aim at extracting prototypical properties of particular feature types, in order to
generate unique semantic signatures.

Besides integrating the temporal component as well, future work will espe-
cially focus on more formal methodologies for validating our results in terms
of statistical significance (cp. Diggle’s U and residual statistics [19]) and sam-
pling distributions. Our approach can also be improved by resources such as
WordNet10 to disambiguate and map terms from different repositories contain-
ing user-generated bags of words and the inclusion of data from location-based
social networks like foursquare11 or whrrl12.
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