
Grounding Geographic Categories in the

Meaningful Environment

Simon Scheider, Krzysztof Janowicz, and Werner Kuhn

Institute for Geoinformatics, Westfälische Wilhelms-Universität Münster,
Weseler Straÿe 253 D-48151 Münster, Germany

{simon.scheider,janowicz,kuhn}@uni-muenster.de

Abstract. Ontologies are a common approach to improve semantic in-
teroperability by explicitly specifying the vocabulary used by a partic-
ular information community. Complex expressions are de�ned in terms
of primitive ones. This shifts the problem of semantic interoperability to
the problem of how to ground primitive symbols. One approach are se-

mantic datums, which determine reproducible mappings (measurement
scales) from observable structures to symbols. Measurement theory o�ers
a formal basis for such mappings. From an ontological point of view, this
leaves two important questions unanswered. Which qualities provide se-
mantic datums? How are these qualities related to the primitive entities
in our ontology? Based on a scenario from hydrology, we �rst argue that
human or technical sensors implement semantic datums, and secondly
that primitive symbols are de�nable from the meaningful environment,

a formalized quality space established through such sensors.
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1 Introduction

The symbol grounding problem [13] remains largely unsolved for ontologies: ul-
timately, the semantics of the primitive terms in an ontology has to be speci�ed
outside a symbol system. Tying domain concepts like river and lake to data about
their instances (as proposed, for example, in [5]) constrains these in potentially
useful ways, but defers the grounding problem to the symbol system of the in-
stance data. While these data may have shared semantics in a local geographic
context, they do not at higher levels, such as in an INSPIRE scenario of integrat-
ing data and ontologies across Europe (http://inspire.jrc.ec.europa.eu/).
It does not seem practical for, say, Romanian hydrologists, to ground their lake
and river concepts in British geography, or vice versa. Furthermore, grounding
domain concepts in a one-by-one manner is an open-ended task. One would pre-
fer a method for grounding ontological primitives in observation procedures in
order to support more general ontology mappings.

In this paper, we propose such a method and demonstrate its applicability by
the category water depth. We provide an ontological account of Gibson's mean-
ingful environment [12] and use Quine's notion of observation sentences [20] as a



basis for grounding ontological concepts in reproducible observation procedures.
At �rst glance it seems improbable that highly elaborated scienti�c concepts,
like those of INSPIRE, could be reconstructed from meaningful primitives. Al-
though such a wider applicability of the method remains to be shown, we suggest
however - like Quine - that even the elaborated language of natural science must
eventually be grounded in observational primitives. After discussing basic issues
from measurement theory, philosophy and cognition (section 2), we review the
core ideas of Gibson's meaningful environment and formalize them (section 3).
Using the example of water depth, we apply the theory in section 4, before draw-
ing some conclusions on what has been achieved and what remains to be done
(section 5).

2 Measurement and the Problem of Human Sensors

In this section we introduce the notion semantic datum and claim that successful
grounding ultimately rests on the existence of human sensors for body primitives.

2.1 Semantic Datums for Languages about Qualities

Measurement scales are maps from some observable structure to a set of sym-
bols [26]. Measurement theory merely provides us with formal constraints for
such mappings, namely scale types. It does not disambiguate scales themselves.
For example, we can distinguish ratio scales from interval scales, because ratio
scales can be transformed into each other by a similarity transformation, while
for interval scales we need a linear transformation [26]. But individual scales are
never uniquely determined by their formal structure. This is called the unique-
ness problem of measurement [26]. Therefore the symbol grounding problem [13]
remains unsolved: In order to disambiguate scales, we need to know about the
conventions of measurement standards, like unit lengths or unit masses.

One approach to this problem are semantic datums [14][18]. A semantic da-
tum interprets free parameters. It provides a particular interpretation for the
primitive symbols of a formal system. An interpretation is a function from all
symbols (terms, attributes, and relations) in a formal symbol system to some
particular other structure which preserves the truth of its sentences. Typically,
formal systems allow for more than one interpretation satisfying their sentences,
and therefore they have an ambiguous meaning. As non-primitive symbols in a
formal system are de�nable from the primitive ones, a semantic datum can �x
one particular interpretation. The structure in which the symbols are interpreted
can be either other formal systems (reference frames in the sense of Kuhn et al.
[15]) or observable real world structures (qualities). We say that a formal system
is grounded, if there exist semantic datums for an interpretation into qualities.
Examples for such semantic datums are measurement standards. A formal sys-
tem may also be indirectly grounded by chaining several semantic datums. Simple
examples of grounded formal systems are calibrated measurement devices, like a
thermometer. A semantic datum is given by the observable freezing and boiling



events of water at a standard air pressure. More complex examples are datums
for geodetic positions: A directly observable semantic datum for the positions on
a Bessel ellipsoid consists of a named spot on the earth's surface like "Rauen-
berg" near Berlin (Potsdam Datum) and a standard position and orientation for
the ellipsoid.

How can we expand these ideas to arbitrary languages about qualities? Bet-
ter: For which language primitives do such semantic datums exist?

2.2 Sensors as Implemented Scales

In this paper, we consider a sensor to be a device to reproducibly transform
observable structures into symbols. A sensor implements a measurement scale
including a semantic datum, and therefore establishes a source for grounding.
The main requirement for such sensors is reproducibility, i.e. to make sure that
multiple applications of the sensor assign symbols in a uniform way.

We already said that calibrated measurement devices are grounded formal
systems, and therefore we call them technical sensors. Following Boumans [8],
any reliable calibration of a technical sensor is based ultimately on human sen-
sation, because it needs reproducible gauging by human observers [8].

So any grounding solution based on measurement ultimately rests on the
existence of human sensors. But what is a human sensor supposed to be? For
human sensors, reproducibility means something similar to inter-subjective word
meaning in linguistic semantics. More speci�cally, we mean with a human sensor
that an information community shares symbols describing a certain commonly
observable situation.

2.3 Are there Human Sensors for Body Primitives?

Embodiment and Virtuality of Language Concepts A commonly observ-
able situation is exactly what Quine [20] described with occasion sentences and
more speci�cally with observation sentences. Quine's argument is that natu-
ral language sentences vary in their semantic indeterminacies. There are certain
occasion sentences, utterable only on the occasion, with relatively low indetermi-
nacy and high observationality. These sentences are called observation sentences.
Symbols of a language in general inherit their meaning from such sentences, but
the further away they are from such observation sentences inside of a language,
the more abstract and indeterminate they get. Thus a symbol like "Lake Con-
stance" (a name for an individual) is less virtual than "Lake" (a general term),
which is again less virtual than a social construction like "Wetland". Whether
a symbol is less virtual than another is primarily dependent on its reference to
bodies and their parts. This is what Quine called divided reference ([20], chap-
ter 3): Humans individuate bodies like "Mama" by reference to (pointing at)
their observable parts and using a criterion of individuation. And they quantify
over general terms (categories) like "Mother" by reference to a yet undetermined
number of similar but virtual bodies.



The empirical arguments from cognitive linguists, e.g. [16], that embodiment
is the semantic anchor for more virtual language concepts via metaphors, seem to
underpin these early ideas about body based primitives. Langacker [16] suggests
that imagined bodies and �ctive entities are a semantic basis for formal logic and
quanti�er scopes in the sense of Quine.

Following these lines of thought, we take the view that language semantics,
especially the semantics of formal ontologies, is anchored in the individuation of
bodies as uni�ed wholes of parts of the environment. Individuation rests on per-
ceivable qualities, e.g. their shape. But how can we imagine humans to perceive
such properties of bodies and their parts?

Scanning A certain kind of virtuality in perception is especially interesting for
us. Drawing on ideas of Talmy, Langacker [16] also suggests thatmental scanning,
a �ctive motion of a virtual body in the perceived or imagined environment,
is central to language semantics. The sentence "The balloon rose quickly" thus
denotes an actual body movement, whereas "This path rises quickly near the top
of the mountain" can only be understood by imagining a virtual body movement
in an actual environment. This view is also supported by recent work on grounded
cognition [1] which claims that human cognition is grounded through situated
simulation. The motion oriented notion of scanning proposed here is a special
case of such situated simulation. We assume that some perception is scanning : a
series of virtual steps in an environment, with each step leading from one locus
of attention to the next.

Ostension and Agreement on Names In order to assume a human sensor
for an observable language symbol, it is necessary that di�erent actors (as well
as the same actor on di�erent occasions) will reliably agree on the truth of
its observation sentences in every observable situation. This e�ectively means
that there must be consensus about names for bodies and body parts. Quine
[20] suggested that observable names, like "Mama", can be agreed upon in a
language community by pointing at a body. According to Quine, the agreement
on names for bodies can be based on an observable action such as ostension,
given the situation is simultaneously observed and the viewpoints of a language
teacher and a learner are enough alike. In the same manner, the correct word
usage is inculcated in the individual child of a language community by social
training on the occasion, that is by the child's disposition to respond observably
to socially observable situations, and the adults disposition to reward or punish
its utterances1 ([20], chapters 1 and 3). In this way, agreement on names for
bodies actually spreads far beyond the concretely observable situation, involving
a whole language community.Ostension is nothing else than a communicative act
including a virtual movement, because an observer has to scan a pointing body
part, e.g. a �nger, and extend it �ctively into space. So this �ts our assumptions.

1 According to Quine, observation sentences are the entrance gate to language, because
they can be easily learned directly by ostension without reference to memory



Further on, we will just assume that body parts and body primitives can always
be given unambiguous names by using ostension.

3 Gibson's Meaningful Environment

In this section we discuss a formal grounding method based on Gibson's meaning-
ful environment. We begin with two examples illustrating perceptual primitives
for bodies and then proceed with a discussion of Gibson's ideas.

3.1 The Blind Person in a Closed Room

How does a blind man perceive the geometric qualities of a closed room? Standing
inside the room, he can rely on his tactile and hearing sensors to detect its surface
qualities. Because he knows his body takes some of the space of the room, the
room must be higher than his body. If he can turn around where he stands, he
knows that a roughly cylindrical space is free and part of the room. By taking a
step forward, he concludes that an elongated "corridor" is free and part of the
room. Because he can repeat steps of the same length into the same direction, he
can step diametrically through the room and even measure one of its diameters.
His last step may be shortened, because his foot bumps into the wall. He thus
detected the inner surface of the room. If he continues summing up paths through
the room, he can individuate the whole room by its horizontal extent.

3.2 The Child and the Depth of a Well

Imagine a child in front of a water well trying to assess its depth. It cannot see
the ground in the well as no light reaches it. Nevertheless, the child can perform
a simple experiment. It drops a brick from the top of the well and waits until
it hits the water surface. The child cannot see this happening but can hear the
sound. It can repeat the experiment and count the seconds from dropping to
hearing the sound, and hence it can measure the depth of the well. The child
assesses the depth by simulating a motion that it cannot do by its own using a
brick.

3.3 A Short Synopsis and Extension of Gibson's Ideas

Gibson [12] sketches an informal ontology of elements of the environment that
are accessible to basic human perception, called the meaningful environment. In
the following, we try to condense his ideas about what in this environment is
actually directly perceivable and complement them with the already discussed
ideas about �ctive motion.

The environment is mereologically structured at all levels from atoms to
galaxies. Gibson claims that at the ecological scale, so called nested units are
basic for perception: Canyons are nested within mountains, trees are nested
within canyons, leaves are nested within trees. The structure of ecological units



depends on the environment as well as the perceiving actor in it. But the percep-
tion of individual units, of their composition and of certain aspects of their form
and texture are common to humans in a certain ecological context. Thus we can
assume a human sensor for them. Although there are no a priori atomic units,
perceptual limits do exist for geometric properties (we will call this perceivable
granularity). Biological cells are beyond these limits, and therefore not directly
perceivable, whereas leaves are.

The composition of ecological units determines the surface qualities of mean-
ingful things, i.e. their shape, called layout, and their surface texture (including
colors). Furthermore, these surface qualities individuate the meaningful things
in the environment by a�ordances. Due to ecological reasons, things with sur-
faces are able to a�ord actions: for example to support movements, to enclose
something as hollow objects, to a�ord throwing as detached objects. Surface per-
ception is therefore considered by Gibson to be a reliable mechanism for object
individuation: Surfaces are the boundaries of all meaningful things humans can
distinguish by perception. Beyond each surface lies another meaningful thing
(exclusiveness), and the meaningful environment is exhaustively covered by such
meaningful things (there is no part of it that is not covered by them). Further-
more, all major categories of meaningful things can be individuated by some
a�ordance characteristic based on surface qualities.

The most important top level categories of such things are substances, me-
dia and surfaces. A part of a medium is a unit of the environment that a�ords
locomotion through it, is �lled with illumination (a�ords seeing) and odor (af-
fords smelling) and bears the perceivable vertical axis of gravity (a�ords vertical
orientation). In this paper, we will restrict our understanding of a medium to lo-
comotion a�ordances. It is clear that the classi�cation of a medium is stable only
in a certain locomotion context : water is a medium for �sh or divers, but not for
pedestrians. So there will be di�erent media for di�erent locomotion contexts,
but for most cases, including this paper, it will be enough to consider two of
them: water and air. Substances simply denote the rigid things in a meaningful
environment that do not a�ord locomotion through them. Surfaces are a thin
layer of medium or substance parts located exactly where any motion must stop.

We complement Gibson's ideas by drawing on the concept of virtual places
and �ctive motion outlined in 2.3. In doing so, we rea�rm the idea of a�ordances
as central to the perception of the environment, because we assume that sub-
stances, media and surfaces can be perfectly conceived through the imagination
of virtual bodies moving through them. So if people say that the branches of a
biological tree are thicker than their forearm, we consider them conceiving parts
of the tree and the forearm as places for a virtual body. We call such a place
locus of attention. Furthermore, we also consider humans being able to refer to
parts of places that are beyond perception and therefore even more virtual: Hu-
mans can refer for example to the cells of a leaf without perceiving them. We
closely stick to the idea that this perceivable environment is the source for human
conceptualization, and all other categories are re�nements or abstractions from
them. In particular, our notion of place is e.g. much less abstract than Casati and



Varzi's notion [9]: Entities and their places are not distinguishable, and therefore
two things occupying the same place are the same. This also distinguishes our
approach from that of an ecological niche [22].

3.4 Nested Places

The central methodological question is: for which structures in a Gibson envi-
ronment can we assume sensors, and what are their formal properties? In this
section, we will introduce and discuss the domain G (denoting the domain of
virtual places) and the part-of relation P [partof ] on G. In Sect. 3.5, 3.6 and
3.7, we discuss geometrical properties of virtual steps, Step, =L [equallength]
and OnL[equaldirection] in G, and in sections 3.8 and 3.9 we introduce medium
connectedness AirC and WaterC and verticality VertAln on G, respectively. In
the formal part of these sections, we introduce a �rst order theory and assume
for convenience that all quanti�ers range over G unless indicated otherwise, and
that all free variables are implicitly all-quanti�ed.

Following our discussion above, we take the view that our domain G consists
of nested places for the actual and virtual things that can be perceived in the
environment. Mathematical artifacts like in�nitely thin planes, lines and points
are not in this domain, because they cannot contain extended things and are
not perceivable. So we must construct the whole environment from something
equivalent to regular regions in Euclidean space. Places have well-behaved mere-
ological and geometric structures, which will be discussed in the subsequent
sections. Our ideas about this structure were in�uenced by [2], [6].

As discussed in Sect. 3.3, our domain of places has a part-whole structure
humans can refer to by pointing, and this structure is assumed to be atom-
less (even though we assume a granularity for perceiving their geometrical or
topological properties):

Axiom1 We assume the axioms of a closed extensional mereology (CEM) [9] for
a primitive part-of relation P : G×G on places G (meaning the �rst place
is a part of the second), so that the mereological sum of every collection of
places is another existing place and two places having the same parts are
mereologically equal. The usual mereological symbols PP (proper-part-of),
O (overlap), PO (proper overlap) and + (sum) are de�nable.

3.5 Steps and their Length and Direction

We suppose that humans experience the geometrical and topological structures
of the meaningful environment by a primitive binary relation Step(a, b), mean-
ing the virtual or actual movement of a locus of attention from place a to b.
Humans perceive length and direction of steps, because (in a literal sense) they
are able to repeat steps of equal length and of equal direction. And thereby, we
assume, they are able to observe and measure lengths of arbitrary things in this
environment. The ratio scale properties of these lengths, as described e.g. by
extensional systems in [26], must then be formally derivable from the structural



properties of steps. What formal properties can we assume for such perceivable
steps?

The visual perception of geometrical properties, like equality of distances and
straightness of lines, is a source of puzzles in the psychological literature, be-
cause human judgment tests revealed e.g. that perceived straight lines are not
equivalent to the usual Euclidean straight lines [23]. Like Roberts et al. [21] sug-
gested, it is nevertheless plausible to assume that the usual Euclidean properties,
like congruence of shapes under rotation, are reconstructed by humans through
learning. We adopt this view because Euclidean properties seem indispensable
for human orientation and the recognition of body concepts.

Perceived geometry should have a �nite and discrete structure, because of
the resolution properties of sensors [10], and human perception in particular
[17]. There are �nite approaches to geometry available that seem to �t well to
our problem (see Suppes [24]), but would also require �nite and approximate
accounts of a length scale (an example for such a scale can be found in [25]).

As a �rst step, we con�ned ourselves in this paper to an in�nite and dense
version of a theory of steps with granularity, based on the pointless axiomatiza-
tion of Euclidean geometry given originally by Tarski [27]. We write xy =L uz for
two steps from locus x to y and from u to z having equal length, and OnL(x, z, y),
if locus z is on a line between x and y or equal to any of them (compare Fig. 1).
Note that OnL implies collinearity and betweenness. For the rest of the paper,
we assume that the primitives OnL and =L are only de�ned for loci of attention.

Fig. 1. Equal length and equidirection for steps.

Our equidistance =L and equidirection OnL primitives for steps satisfy a
3-D version of Tarki's equidistance and betweenness axioms for Elementary Ge-
ometry [27], similar to the approach in [2]. The quanti�ers on points in Tarski's
version or on spheres in Bennett's version can be replaced by quanti�ers over the
domain and range of steps: Our quanti�er ∀Locusx.F (x) for example, meaning
∀x.Step(x, x) → F (x), restricts the domain of places to the loci of attention.
Unlike Tarski and Bennett [2], we do not assume sphericity but the step relation
as a primitive. Furthermore, identity of points in Tarski's or concentricity of
spheres in Bennett's version just means to "step on the spot" in our theory. We



therefore assume a version of Tarski's axioms with identity of points replaced by
mereological equality of loci of attentions:

Axiom2 We assume the following axioms for equidistance =L: Symmetry, iden-
tity, transitivity (compare the three axioms for equidistance in [2]), and for
equidirection OnL: Identity, transitivity and connectivity (compare the three
axioms for betweenness in [2]). We also assume the axioms of Pasch, Euclid,
the Five-Segment axiom, the axiom of Segment Construction, the Weak Con-
tinuity axiom, and a 3-D version of the Upper and Lower Dimension axiom,
as described in [2].

Tarski's axioms ensure that there are loci of attention centered at all the "points"
of a Euclidean space. It follows that steps and their lengths and direction have
the expected Euclidean properties, and in particular that each pair of loci of
attention forms a step with these properties.

3.6 Loci of Attention

A locus of attention is a smallest perceivable place. It can be thought of as a
granular sphere with congruent shape giving rise to a minimal resolution for
geometric properties in general. This is because we assume that humans per-
ceive the geometrical qualities of arbitrary places by covering them with loci of
attention. In fact, loci of attention are our simpli�ed version of just noticeable
di�erences in psycho-physics [17], but being independent of the stimulus.

We can de�ne a notion of shorter than ≤ , holding i� a step from y to x is
shorter than a step from q to z:

De�nition 1. (shorter than) ∀Locusy, x, q, z.(yx ≤ qz)↔ ∃x′.OnL(y, x, x′)∧
yx′ =L qz

We now can de�ne a topological notion of touching or weakly connected, which
applies for a smallest step with non-overlapping loci:

De�nition 2. (touching) ∀Locusx, y.Touching(x, y)↔ ¬O(x, y)∧(∀z.Step(x, z)∧
xz ≤ xy → O(x, z))

Fig. 2. Touching steps, steps centered on boundary (COB) and interior (COI).

All loci of attention are required to be congruent to each other. This can be
expressed by requiring congruent lengths for all pairs of touching loci:



Axiom3 (locus of attention) ∀Locusx, y, z, u.Touching(x, y)∧Touching(z, u)→
xy =L zu

It follows that loci are spheres of a �xed size. Similar to [3], signi�cant places
are the ones that are big enough to contain a granular locus of attention:

De�nition 3. (signi�cant place) Significant(r)↔ ∃Locusx.P (x, r)

We hence assume that insigni�cant places fall beyond the perceivable resolution
for geometric properties. A discrete theory of steps would allow for an even
stronger notion of resolution based on a minimal step length (see [24]).

3.7 The Environment is Wholly Covered by Steps

A step is the central perceivable relation giving rise to a�ordances, because if
we virtually step through an environment, it a�ords the continuous transfer of
a virtual body from one place to another. This is only possible if those places
are strongly connected. A strongly self-connected place always contains a sphere
which, when we split the place at any point, overlaps both halves of the split
(compare de�nitions in [4], [7]). So there is a 2-D surface in the middle corre-
sponding to any cut (like "cutting in wood"), and not a line or a point. Strong
connectedness can be expressed based on our primitives by introducing paths:

We call the minimal elongated place one can step in a path. We assume that
if there is a step from locus x to y on a path p, then x and y are part of p, and
there is always exactly one other locus z on p with equal distance from x and y :

De�nition 4. (path) EndsOfPath(x, y, p)↔ Step(x, y) ∧ P (x+ y, p)∧
(∃!z.Step(x, z)∧ P (z, p)∧ xz =L zy)∧ (¬∃p′.EndsOfPath(x, y, p′)∧ PP (p′, p))

The idea is that paths are the smallest elongated places of minimal thickness
enclosing a step and all the closer steps in between them. Because there is exactly
one locus z in the middle of x and y on the path p, we assure that the path has
minimal thickness and is elongated (see Fig. 3). Because there is no smaller path
with that property, we make sure that x is the beginning and y is the end of the
path. The de�nition implies strong connectedness of a path, because all pairs of
loci have a continuous collection of loci in between them, and loci are spherical.

A general de�nition of strong connectedness for signi�cant places is then
straightforward:

De�nition 5. (strong connectedness) SC(x)↔ Significant(x) ∧
(∀Locusu, z.P (u+ z, x)→ ∃p.EndsOfPath(u, z, p) ∧ P (p, x))

We take the view that our domain of places, the meaningful environment, is
wholly covered by steps and paths, because we assume that this is the common
way how people experience their environment. It turns out that our environment
of places is quite similar to the ideas outlined in [4], [2], [6], especially Bennett's
region based geometry RBG. In order to establish the link between steps on
one side and arbitrary signi�cant places on the other, we will introduce 4 axioms



Fig. 3. Strongly connected places are connected by paths. The meaningful environment
is wholly covered by strongly connected places.

along the lines of thought in [4], which ensure that each signi�cant place coincides
with a set of centers of loci of attention.

To this end we need a topological notion called centered on the boundary
COB(y,x) (compare Fig. 2), meaning y is just on the boundary of x,

De�nition 6. (centered on boundary) ∀Locusy, x.COB(y, x)↔
(∃z.Step(x, z) ∧OnL(z, x, y) ∧ (zx =L xy) ∧ Touching(z, y))

from which a further notion, centered on the interior (Fig. 2), is de�nable.

De�nition 7. (centered on interior) ∀Locusy, x.COI(y, x)↔
(∃z.Step(x, z) ∧ COB(z, x) ∧ (¬zx =L xy) ∧ (xy ≤ xz))

For arbitrary places of a signi�cant size x we can now de�ne a predicate meaning
that a step is centered on its interior.

De�nition 8. (centered on interior) ∀Locusy.COI(y, x)↔
(∃z.Step(y, z) ∧ COI(y, z) ∧ P (z, x))

We �rst have to make sure that there is a sum of loci of attention corresponding
to every (signi�cant) open 3-ball in our Euclidean environment. We therefore
assume that for each step xy of at least half a locus length, there is a perceivable
ball z centered on x and topologically bounded by y. This is actually a granular
variant of Bennett's Axiom 6 in [4]:

Axiom4 (steps give rise to signi�cant 3-balls) ∀Locusx, y.¬COI(x, y) →
(∃z.(∀w.COI(w, z)↔ (xw ≤ xy ∧ ¬xw =L xy)))

We also assume that the domain of steps is extensible, so there are always larger
balls constructible (compare Axiom 7 in [4]):

Axiom5 (steps are extensible) ∀Locusx, y.∃z.Step(x, z)∧ (x 6= z)∧ (∀z′.xz ≤
xz′ ↔ (xy ≤ xz′ ∧ ¬xz′ =L xy))

Secondly, we have to make sure that center points on arbitrary signi�cant places
behave in correspondence with their mereological structures. So parts of places
always imply interior steps (compare Axiom 8 in [4]):



Axiom6 (parts imply interior steps) P (x, y) ↔ (∀Locusu.COI(u, x) →
COI(u, y))

And third, we must assure that all places are actually covered by steps (compare
Axiom 9 in [4]):

Axiom7 (places overlap with loci of attention) ∀r∃Locusx.O(x, r)

As was shown by Bennett [4], our Axioms 1-7 provide an axiom system for 3-
dimensional regular open sets of Euclidean space: It can be proven that the sets
of interior loci ("points") of arbitrary sums of loci are regular open. Because
of granularity of perception, places are not in general constructible from steps
in our theory. It can nevertheless be proven that they are coverable by loci of
attention, and these covering sums of loci must have the expected geometrical
properties:

Proposition 1. Every place is part of a sum of loci of attention.

To see this, be aware that from Axiom 7 it follows that every place has a part
that is part of a locus of attention. With Axiom 1 we assume that every place
is a sum of such parts. Thus every place is coverable by steps.

3.8 Media and Substances are Wholes under Simple A�ordance

Closely following Gibson, we assume that humans can directly perceive whether
the environment a�ords a certain type of movement, and are thereby able to
individuate bodies, media and their surfaces. Like in the previous section, we
can think of such movements as �ctive motions, and therefore the a�ordance
primitives in this section are just re�nements of our already introduced step
primitive. In general, we assume that humans can perceive a multitude of such
simple a�ordances. For our purpose, we will describe two of them, AirC and
WaterC, for movement in air and water, respectively. Because they have the
power of individuation, we assume that those relations are mutually exclusive.
Then we can de�ne media as uni�ed wholes under the respective a�ordance
primitive.

Media. Connected by the same medium implies a step on a medium-connected
path and is symmetric and transitive:

Axiom8 (connected by the same medium) MediumC(x, y)→
∃p.EndsOfPath(x, y, p) ∧ (∀Locusz.P (z, p)→MediumC(z, x)
∧MediumC(z, y)) ∧ (∀u.MediumC(y, u)→MediumC(x, u))

The actually observable primitives are its two mutually exclusive sub-relations
AirC and WaterC,

De�nition 9. (a medium is either air or water) MediumC(x, y)↔
AirC(x, y) ∨WaterC(x, y)



Axiom9 (mutual exclusiveness) MediumC(x, y) ∧MediumC(u, z) ∧ (z +
u)O(x+y)→ ((WaterC(z, u)∧WaterC(x, y))Xor(AirC(z, u)∧AirC(x, y)))

which give rise to media water and air by using them as unity criterion: A
(water/air) medium is any maximal medium-connected whole:

De�nition 10. (media) Air(x)↔Whole(x,AirC)∧
Water(x)↔Whole(x,WaterC) ∧Medium(x)↔Whole(x,MediumC)

For a de�nition of whole as a maximal sum of parts connected by a partial
equivalence relation, we refer to [11]. Informally, a medium is just any place
which has all places of an equivalence class of AirC or WaterC as parts. Due
to Axiom 8 and by de�nition, media must be composed of paths and therefore
must have a signi�cant size.

Substances and Bodies. According to Gibson, substances are not directly per-
ceivable, only via the perception of a certain medium and its surface: just like
walls are only perceivable as obstacles for the locomotion of light and other bod-
ies through media. In this view, substances can be de�ned from media and de�ne
all other forms of places:

De�nition 11. (substance) Substance(x)↔ ¬∃z.(Medium(z) ∧O(xz))

Nevertheless, humans can obviously recognize the shape of certain signi�cant
strongly connected substances, called bodies. Therefore we must conceive bod-
ies, similar to media, as individual wholes made up of substance paths. This is
possible because the whole environment is covered with virtual paths by propo-
sition 1. Bodies are maximal strongly connected substance wholes:

De�nition 12. (connected by a body) BodyC(x, y) ↔ Substance(x + y) ∧
SC(x+ y),

meaning two places are connected by the same body if they are substances and
their sum is strongly connected, and

De�nition 13. (body) Body(x)↔Whole(x,BodyC) ,

meaning a body is any maximal strongly-connected whole of substances.

Surfaces. Surfaces must also be de�nable using steps, and therefore have a mini-
mal thickness. Thereby we avoid the philosophical question whether an in�nitely
thin topological boundary belongs to a region or its complement (see Casati and
Varzi [9]). We take Borgo's view advocated in [7] and assume that every individ-
uated body or medium has its own surface, which is simply a thin layer of paths
making up the surface part of the body or medium (compare Fig. 4), such that
every step's locus is touching a locus from the outside of the body or medium:

De�nition 14. (connected by a surface) SurfaceC(x, y, r)↔
(Medium(r)∨Body(r))∧(∃p.EndsOfPath(x, y, p)∧P (p, r)∧(∀Locusz.P (z, p)→
(∃Locusu.¬O(r, u) ∧ Touching(z, u))))



Fig. 4. Surfaces of bodies consist of a thin layer of virtual paths touching the outside
of the body.

A surface is then a maximal surface connected part of a body or a medium:

De�nition 15. (surface) SurfaceOf(x, r)↔
Whole(x, (λu, v.SurfaceC(u, v, r)))

From these de�nitions and Axioms 8 and 9 it is provable that substances and
media in fact make up the whole meaningful environment:

Proposition 2. Substances and Water and Air "partition" the meaningful en-
vironment: Any place that is part of one category cannot be part of another one
(mutual exclusion), and any place is part of a sum of places of these categories
(exhaustiveness).

3.9 Verticality and Absolute Orientation

We assume that there is a human sensor asserting that a step is aligned with
gravity, as illustrated by the well example in Sect. 3.2. This primitive is called
V ertAln. Assuming collinearity and parallelism for this primitive would be an
oversimpli�cation, because gravity lines through the earth's body are not straight
lines (compare Fig. 5).

Fig. 5. A curved gravity line and equipotential surfaces.

We assume that VertAln describes a symmetric and transitive step, and that
it always exists for arbitrary loci of attention:



Axiom10 (ubiquity) ∀Locusx.∃Locusz.V ertAln(x, z)
Axiom11 (symmetry and transitivity) V ertAln(x, y)→ Step(x, y)∧

V ertAln(y, x) ∧ ∀Locusz.(V ertAln(x, z)→ V ertAln(y, z))

4 De�ning Water Depth from Direct Perception of a

Water Body

It remains to show that the Gibson environment is applicable to our water depth
scenario, such that all geographic categories, including the water depth quality,
are de�nable in it.

4.1 Deriving Lengths from the Meaningful Environment

We claimed that all involved categories can be de�ned from the meaningful
environment. What is still missing is a de�nition for a symbol space of lengths.
The domain of lengths L is not part of the environment and is assumed to be
an abstract extensional system in the sense of [26]. It has two binary relations
"smaller than or equal" and "sum" that satisfy Suppes' extensional axioms, and
is therefore on a ratio scale with one degree of freedom.

A length function Length can be derived as a homomorphism from the set of
steps of the meaningful environment into the length space L. It is clear that this
mapping is conventional and must itself rely on a semantic datum. We therefore
�rst have to �x a unit step Step(0,u), for example the two ends of the platinum
bar called "Mètre des Archives". We call one end of this bar 0 and the other one
u:

Axiom12 (non-trivial unit step) ∀x, y.(x = 0∧y = u)→ (Step(x, y)∧x 6= y)

Second, we map the quaternary symbol ≤ on loci to the "smaller than or equal
to" symbol on the length space. Third, we map the following de�nable summa-
tion symbol on loci to the summation symbol of the length quality space:

De�nition 16. (sum of lengths) cx ⊕ ez =L ky ↔ ∃x′, y′.(0x′ =L cx) ∧
(0y′ =L ky) ∧ (x′y′ =L ez) ∧ (OnL(0, x′, y′) ∨OnL(x′, 0, y′) ∨OnL(0, y′, x′))

A sum of the lengths of two steps is a third step having the expected length.
We fourth map all steps with the same length as Step(0,u) to the symbol "1",
and all other steps homomorphically to a number symbol: All steps with equal
length are mapped to one and only one number symbol such that the truth of
all sentences about ≤ and ⊕ is preserved.

For convenience, we write ∀L for a quanti�er over lengths in L and use the
symbols =L,⊕,≤ , de�ned for steps, analogously on lengths. Once a length space
for steps is established, we can de�ne a chain length of a path recursively as the
sum of lengths of any chain of steps on it:



De�nition 17. (chain length) ∀Lk.ChainLength(p) =L k ↔
∃Locusx, y.EndsOfPath(x, y, p)∧ (k =L Length(x, y)∨ (∃z, p′, p′′.(p = p′ +p′′)∧
(k =L ChainLength(x, z, p′)⊕ ChainLength(z, y, p′′))))

The length of an arbitrarily shaped path is then its maximal chain length. Because
- in our current in�nite theory - steps are assumed to be dense, this must be an
in�nitesimal approximation:

De�nition 18. (length of a path) ∀Lk.Length(p) =L k ↔
∀k′.ChainLength(p) = k′ ∧ k ≤ k′ → k =L k′

4.2 Water Depth

The ratio scaled meter water depth space needs a semantic datum to �x its
interpretation, because there is no direct sensor available for it. It is a quality that
has to be constructed from others. Informally, in the meta-data of a database, we
could say that a water depth of a river is the vertical distance measured between
a point on the water surface and the river bed. We now can de�ne these notions
from the meaningful environment:

Let us start by de�ning a diameter of a medium in the meaningful environ-
ment: A diameter of a medium r is any medium path connecting two parts of
its surface, such that the path is contained in r :

De�nition 19. (diameter) Diameter(p, r)↔Medium(r) ∧ P (p, r)∧
SurfaceOf(s, r) ∧ (∃Locusx, y, u.EndsOfPath(x, y, p) ∧ P (x + y, s) ∧ x 6= y ∧
P (u, p) ∧ ¬P (u, s))

Note that what normally would be considered as the water surface is a part of
our medium surface. We de�ne a depth of a medium as the length of a diameter
path whose steps are vertically aligned:

De�nition 20. (depth) ∀Lk.Depth(k, p, r)↔ Diameter(p, r)∧
k =L Length(p) ∧ (∀Locusz, u.P (z, p) ∧ P (u, p)→ V ertAln(z, u))

We can now state that a water depth is a depth of a water body connecting
the medium air with the ground. There is an in�nite number of water depths for
a water body (compare [19]):

De�nition 21. (water depth) ∀Lk.Waterdepth(k, p, r)↔ Depth(k, p, r)∧
Water(r) ∧ (∃Locusx, y.EndsOfPath(x, y, p)∧(∃Locusa, b.Touching(x, a)∧
Touching(y, b) ∧AirC(a, a)∧BodyC(b, b)))

Sticks and sonars both can be considered as realizations of such a virtual
water depth path.



Fig. 6. Water depth is the length of a vertical diameter path in a water body.

5 Conclusion and Future Work

Our approach resolves semantic heterogeneity of basic symbols in an ontology
by introducing semantic datums in the form of an observation procedure. Wa-
ter depth is an example of a basic symbol in a navigation ontology in need of
grounding. We show that Gibson's meaningful environment is a su�cient basis
to establish such semantic datums. For this, we introduced a formal theory of
Gibson's meaningful environment, supplying observable primitives for our the-
ory. We show how to ground water depth in our theory by asserting formal
characteristics of observable primitives and de�ning water depth in terms of
these.

We take the view that sensors (human or technical) are implementations of
semantic datums that reproducibly interpret observable primitives into observ-
able real world structures. Technical sensors are based on human sensors, and
human sensors detect bodies and their movements. Natural language semantics
is grounded in bodily experience and scanning, that is the imaginative move-
ment of virtual bodies in a perceivable environment. This is plausible because
humans can always unambiguously refer to bodies and their parts by ostension.
We claim that Gibson's meaningful environment is fully equipped with body
related sensors, including sensors for steps, equal length, equidirection, verti-
cality and various sensors for simple a�ordance primitives that can be used to
individuate media, surfaces and substances.

The presented theory of the meaningful environment is a �rst sketch of our
ideas. As outlined in Sect. 3.5, the theory could be made more appropriate
to sensors by making it �nite and discrete, so that we admit a resolution for
lengths, along the lines of thought in [24] and [25]. Furthermore, it is still an open
question which ontologies are amenable to our method. The general applicability



to geospatial concepts needs to be demonstrated with additional case studies.
We are currently working on �ow velocity and street network categories.

Even though the proposed observation primitives are bound to have cogni-
tive interpretations, it is important to note that they have low indeterminacy.
Observable properties on this basic body level do not seem to have a graded
structure, too. For example, there is no graded truth value for the sentence "this
is the wall of this room" for blind men being in that room, as there will be
perfect agreement on this sentence. Any theory about semantic grounding must
primarily be able to explain how humans actually accomplish inter-subjective
measurement and observation of surface qualities, despite all the cognitive and
linguistic ambiguities involved.
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