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Abstract

Big Data, Linked Data, Smart Dust, Digital Earth, and e-Science are just
some of the names for research trends that surfaced over the last years.
While all of them address different visions and needs, they share a common
theme: How do we manage massive amounts of heterogeneous data, derive
knowledge out of them instead of drowning in information, and how do we
make our findings reproducible and reusable by others? In a network of
knowledge, topics span across scientific disciplines and the idea of domain
ontologies as common agreements seems like an illusion. In this work,
we argue that these trends require a radical paradigm shift in ontology
engineering away from a small number of authoritative, global ontologies
developed top-down, to a high number of local ontologies that are driven
by application needs and developed bottom-up out of observation data.
Similarly as the early Web was replaced by a social Web in which vol-
unteers produce data instead of purely consuming it, the next generation
of knowledge infrastructures has to enable users to become knowledge
engineers themselves. Surprisingly, existing ontology engineering frame-
works are not well suited for this new perspective. Hence, we propose an
observation-driven ontology engineering framework, show how its layers
can be realized using specific methodologies, and relate the framework to
existing work on geo-ontologies.

1 Introduction and Motivation

The ever increasing data universe and studies showing that the amount of new
data created surpasses our capacities to store it, call for improved filtering,
knowledge mining, and retrieval capabilities. While we hope that more data
with a higher spatial, temporal, and thematic resolution enables us to better
address complex scientific and social questions, understanding, sharing, and
reusing data becomes more challenging. Methods to integrate data from het-
erogeneous sources gain importance, e.g., for achieving the vision of a multi-
thematic and multi-perspective Digital Earth. The same trend can be observed
in other scientific domains. For instance, the integration of massive data has
been named a new frontiers for Bioinformatics (Jones et al., 2006).

The Semantic Web has been proposed to address the integration problem
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and improve information retrieval beyond simple keyword matching via knowl-
edge representation languages and reasoning. However, at its very core, the
Semantic Web is a technology stack developed with questions of decidability
and inferential power rather than conceptual modeling in mind. Consequently,
the formal semantics defined for languages such as the Web Ontology Language
(OWL) does not always integrate well with modeling paradigms in the geo-
sciences, i.e., with numerical, statistical, and geometric methods. In the past,
this has frequently let to misconceptions on the suitability of OWL for checking
the logical consistency of geo-data against schema knowledge. Moreover, the Se-
mantic Web is mostly feature-driven, a field-based view (Goodchild et al., 2007)
is difficult to incorporate. Generally speaking, the majority of Semantic Web
research and technologies does not answer the question of how to engineer geo-
ontologies and integrate them with GIS or Spatial Data Infrastructures (SDI).
Most importantly, a layer specifying the transition from observation data to
classes and relations is missing.

Among other factors, the lack of progress in realizing a Geospatial Semantic
Web is due to a misunderstanding that ontologies are a replacement for nu-
merical and statistical modeling. However, ontologies are best understood as a
communication and exchange layer. While geo-scientists rely on sensor obser-
vations, models, and simulations, results are often shared using categories, i.e.,
as nominal data. For example, we publish scientific results on the role of the
forest industry for rural economics by referring to the categories Forest or Town.
However, the meaning of these terms differs between and within domains to a
degree where they may become incompatible. Consequently, data combined on
the category level is often incommensurable due to the hidden ambiguities in the
definition of these categories. Nevertheless, this semantic heterogeneity should
not be misunderstood as a burden but is a challenge imposed by the situated
nature of conceptualization; geographic features and their types are a product
of cognition and social convention (Brodaric and Gahegan, 2007; Mark, 1993;
Barsalou, 2003; Lehar, 2003; Janowicz, 2010).

For instance, under California law, Town and City are explicitly defined as
interchangeable by Government Code Section 34502. In contrast, Bloomsburg
is the only incorporated town in Pennsylvania, while all other municipalities are
either boroughs or townships. Following the Utah Municipal Code 10-2-301,
five types of cities can be distinguished based on their population, while those
municipalities with a population under 1000 are towns. Thus, a comparison
of studies on rural economics which refer to the category Town without giving
unambiguous definitions is on shaky grounds. The same argument can be made
for the Forest category. Lund (2011), for instance, lists hundreds of different
definitions for forest, deforestation, afforestation, and reforestation – while none
of them is right or wrong, they all have a direct impact on whether a certain
area on the Earth’s surface is categorized as Forest or not. There is nothing like
a real forest in the physical world and, moreover, it turns out that this assump-
tion is rather hindering for ontology engineering (Kuhn, 2009). As these terms
appear frequently in plain text, readers are often not aware of their different
meanings and potential incompatibilities. To address some of these problems,
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publishers and e-Science researchers envision executable papers through which
users can directly reproduce the presented results, e.g., deconstruct nominal
data to observations (Nowakowski et al., 2011).

The resulting problems in sharing and reusing nominal data become even
more pressing taking the current Big Data trend into account (Weinberger,
2011). By running a global query for the type Town (e.g., using the DBpedia
class dbpedia-owl:Town), scholars and especially software agents may easily miss
the fact that among thousands of low population municipalities their dataset
also lists Los Angeles, CA or Stuttgart, Germany.1 Analysis performed on such
a collection may, therefore, yield misleading results. Experience and recurring
failures suggest that we are combining data which was created under different
assumptions on a regular basis (Bishr, 2006). This is especially true for the
re-usage of observation data collected from sensors. The advent of Linked Data
(Bizer et al., 2009), where raw data is shared, interlinked, and combined on-the-
fly, will most likely act as catalyst, especially given the fact that the ontologies
used so far are rather lightweight and may fail to restrict the interpretation of
terms towards their intended meaning (Jain et al., 2010).

Finally, the lack of geo-ontologies is accompanied by a lack of statistical
methods to evaluate nominal geo-data. The prevalent GIS textbook view on
data quality will introduce positional accuracy and completeness in great detail
and only provide marginal and abstract information on logical consistency (often
reduced to topological relations between features) and attribute accuracy. While
measuring and reporting positional accuracy is well standardized, measures for
semantic accuracy are largely missing. The argument that this is due to missing
higher-order measures or ground-truth only holds partially; as will be argued in
this work, Volunteered Geographic Information (VGI) may provide a baseline.

Surprisingly, existing ontology engineering methodologies are not well suited
to bridge the gap between observation data and knowledge engineering. In this
work, we therefore propose a novel, observation-driven framework to the engi-
neering of geo-ontologies (ODOE) that can be integrated with existing method-
ologies. Starting with the semantic description of sensors and their observations,
we show how to combine semantics with methodologies such as geostatistics,
data mining, and machine learning to construct ontological primitives using reifi-
cation. Next, these primitives are integrated with so-called geo-ontology design
patterns acting as strategies to assist domain experts in becoming knowledge
engineers. These patterns can, in turn, be combined to crisp application-level
ontologies, so called microtheories, that are organized in a lattice. Mappings
between such theories are inferred, e.g., via the least common subsumer, similar-
ity reasoning, ontology alignment, reasoning in the presence of inconsistencies,
or out of provenance data. Our methodology preserves semantic diversity and
local, application-centric conceptualizations without giving up interoperability.
Provenance information is maintained while going up the layers from observa-
tions to ontologies. Therefore, scientists exchanging data on the category level
can track down how classes were constructed and, thus, uncover hidden incom-

1via dbpedia:Stuttgart rdf:type dbpedia-owl:Town.
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patibilities before combining datasets. The proposed framework should enable
users to become active knowledge engineers. First steps into this directions are
already visible in form of Google’s Freebase in which users can not only con-
tribute information but also the schema knowledge to structure this information
(Bollacker et al., 2008). By fostering semantic diversity, the ODOE framework
addresses some of the concerns voiced against a purely engineering view on
geographic space (Schuurman, 2006).

Observations have been proposed as the foundation of geo-ontologies be-
fore. The presented work is especially influenced by Frank’s ontology tiers
(Frank, 2003), Couclelis’ ontology of geographic information (Couclelis, 2010),
and Kuhn’s notion of semantic engineering (Kuhn, 2009). However, the ODOE
framework differs in coverage, scope, and applicability. Following Kuhn’s ap-
proach, and in contrast to the work by Couclelis, our work takes a strictly engi-
neering perspective on ontologies and defines them as networks of constraints.
In terms of applicability, i.e., proposing concrete technical and methodological
solutions, the ODOE framework is most similar to Frank’s proposal. How-
ever, the presented framework is based on existing Semantic Web technologies,
implementations, and ontologies, and, hence, can be realized within existing
knowledge infrastructures. While provenance is a key component of the ODOE
framework, it is not covered in Frank’s and Couclelis’ work. Similarly, while
both fundamentally rely on observation data, they do not account for sensor
semantics.2 Finally, Coulelis’s (but also Frank’s) work has a strong focus on the
stepwise construction of objects, while the presented frameworks focuses on the
engineering of geo-ontologies. Hence, tier 0 and level 1 of those approaches are
not covered here. For the same reason, Frank and Couclelis situate social and
cognitive aspects toward the top of their frameworks while ODOE assumes that
all stages, including observations, are driven by social and cognitive aspects.
A similar argument has been made by Scheider (2011) based on the notion of
inter-subjectivity.

Finally, a note on terminology is deemed appropriate. Throughout the paper,
we will use Big (Geo-)Data for the research vision and Linked Data for the
knowledge infrastructure to realize this vision.3 The same is true for e-Science
and Linked Science. We will use the term framework for a generic, template-
like approach, while methodology will be used for specific realizations of layers
within such a framework. To stay in line with the related Semantic Web work,
we will use the terms class and concept, as well as role and relation as synonyms.
Category, however, will refer to the extension of classes.

The remainder of this article is structured as follows. Section 2 introduces
the observation-driven ontology engineering framework in detail. To give an
intuition of how the framework can be realized, a specific methodology is high-
lighted for each level and related to alternative approaches. Examples are given
to evaluate each level. To improve readability, instead of a dedicated related

2However, Frank’s work does include a detailed discussion about measurement and obser-
vation procedures.

3In doing so, we explicitly focus on the challenge of heterogeneous data integration and
leave issues of scalability and storage, such as addressed by MapReduce or Hadoop, aside.
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work section, all relevant materials will be discussed at the beginning of each
subsection. Next, section 3 revisits the framework layers in reverse order to dis-
cuss how provenance is integrated as an essential component of the framework.
Finally, conclusions and an outlook to further work are given in section 4.

2 Observation-Driven Ontology Engineering

This section introduces a layered framework for the engineering of geo-ontologies
out of observation data. To remain adjustable, the framework does not stipu-
late specific realizations for its layers and multiple methods can be combined.
However, to demonstrate our approach and to make it directly applicable for
researchers, we highlight a realization for each layer based on our previous work,
show examples, point out how other approaches can be integrated, and relate
the layers to existing work on geo-ontology engineering. The presented ap-
proach should not be misunderstood as a replacement of these methodologies.
For instance, we do not define all of the stages and actors that are provided
by Methontology (Fernandez-Lopez et al., 1997) but show how to make geo-
ontology engineering ready for the challenges of a data-intensive science.

2.1 Beyond Technology Stacks

The Semantic Web Layer Cake is an evolving and regularly updated, hierarchi-
cal technology stack of standards that address different aspects of the Seman-
tic Web; see 1(a). For instance it defines RDF as data-interchange language,
SPARQL as one of the query languages, and OWL and its profiles as a knowledge
representation language for developing ontologies. How to engineer ontologies
is out of scope for the layer cake. This question is addressed by ontology en-
gineering methodologies such as Methontology. However, these methodologies
have been neither developed with a data-driven semantics nor geo-ontologies in
mind.

In this work, we propose a stack that closes this gap; see figure 1(b). The
observation-driven ontology engineering layer cake starts with observations ac-
quired from sensors, which also includes derived and aggregated observations.
In a next step statistical and numerical methods are used to learn ontological
primitives out of these observations. On the third layer, these primitives are
used within ontology design patterns that act as strategies for the creation of ap-
plication ontologies on the fourth level. While the patterns and application on-
tologies can be aligned with top-level ontologies, the proposed framework focuses
on mappings between local ontologies. This follows an established paradigm in
Artificial Intelligence research, namely developing a lattice of theories that is
consistent at the local level while allowing for contradicting conceptualizations
within the global knowledge (McCarthy, 1987; Uschold, 2000a; Wachsmuth,
2000). While researchers and ontology engineers move up the stack layer by
layer to create and maintain ontologies, the stack can be queried downwards to
access provenance information.
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(a) Semantic Web Layer Cake (b) ODOE Stack

Figure 1: The layers of the Semantic Web and ODOE stacks.

The following subsections discuss the layers and their relationships in detail.

2.2 Sensors, Observation Procedures, and Observations

As physical devices, sensors are out of scope for the ODOE framework. However,
they play two important roles. First, they produce the observations that form
the first level of the framework. Second, we consider sensors to be the physical
realizations of semantic datums (Scheider et al., 2009), and, therefore, sensors
and observation procedures provide crucial provenance information; see section
3. As pointed out by Probst and Espeter (2006), observation procedures are
required to assign values to observed properties. For example understanding
water-level measurements, e.g., as numerical values, requires an understanding
of how these measures were performed, e.g., at the deepest point of a waterbody.

The observation data, i.e., the observation result, sampling time and loca-
tion, targeted feature of interest, sensor used, observation procedure, and so
forth, can be stored in any format and infrastructure as long as the raw data is
available and directly accessible online. Hence, we propose to either store the
data using a Sensor Observation Service (SOS) as part of the Open Geospatial
Consortium’s (OGC) Sensor Web Enamblement (SWE) initiative, or as Linked
Data. OGC services cannot be directly connected to the Linked Data cloud and
the Semantic Web. Therefore, we have introduced a transparent Semantic En-
ablement Layer (SEL) that translates between both infrastructures (Janowicz
et al., 2010). A RESTful (Richardson and Ruby, 2007) and transparent proxy
that serves Linked Data from a SOS has been implemented as part of the SEL
and is available as free and open source software (Janowicz et al., 2011a). Al-
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ternative solutions to make observation data available on the Linked Data cloud
have been presented by Page et al. (2009) and Henson et al. (2009). Finally,
to accommodate geometric approaches, e.g., those based on conceptual spaces
(Gärdenfors, 2000; Raubal, 2004), and to ease the integration of a field-based
view (Fonseca et al., 2002), we have proposed a mapping from regions in con-
ceptual spaces to OWL ontologies that directly follows the ODOE framework;
see (Adams and Janowicz, 2011) for more details.

The Semantic Sensor Network (SSN) ontology and the Stimulus-Sensor-
Observation (SSO) ontology design pattern have been proposed by the World
Wide Web Consortium’s (W3C) SSN-XG incubator group (Lefort et al., 2011;
Janowicz and Compton, 2010) to model, annotate, and store observation data.
The SSO pattern will be discussed in more detail in subsection 2.4, while the
SSN ontology was developed on top of it to specify a broad range of sensor
characteristics such as the survival range, accuracy, and precision. An overview
of alternative ontologies was recently presented by Compton et al. (2009). The
ODOE framework is not restricted to a specific type of sensors or observations,
humans as sensors and derived observations, e.g., from aggregation, can be used
as well.

To give a concrete example, the listing below shows some of the assertions for
an observation taken by a smartphone at the French Press café in Santa Barbara,
CA where the observed property is the user’s location. Such observations are
key to Location-based Social Networks, such as Foursquare or Whrrl, which
allow users to check-in at specific places. This information, together with the
check-in time and optional tags, is then shared with the social network of the
user. A novel methodology to exploit such observations to construct ontological
primitives for Points Of Interest (POI) is discussed in subsection 2.3.

<SSO:Sensor rdf:ID="Droid2Global_Smartphone">[...]</SSO:Sensor>

<SSO:FeatureOfInterest rdf:ID="FrenchPress">

<SSO:hasProperty rdf:resource="#Location"/>[...]

</SSO:FeatureOfInterest>

<SSO:Procedure rdf:ID="GPS_Procedure"/>

<SSO:ObservedProperty rdf:ID="Location"/>

<SSO:Observation rdf:ID="Observation_1">

<DUL:includesObject rdf:resource="#Droid2G"/>

<DUL:satisfies rdf:resource="#GPS_Procedure"/>[...]

</SSO:Observation>

[...]

The observation layer is best compared to Frank’s ontology tier 1 and 2. It
is more difficult to map to Couclelis’ levels which have a strong focus on the
construction of individuals. Her observation level 2 is clearly separated from
the simple and composite objects level 4 and 5. The listing above shows the
difference to the ODOE framework by referring to an optional feature of interest,
i.e., in ODOE observations can refer to objects. Finally, Frank’s and Couclelis’
approaches do not account for sensors metadata; see section 3 for details.
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2.3 Ontological Primitives

Primitives, also called base symbols, are those classes that are not defined within
an ontology and represent the borders of formalization. The choice of primi-
tives depends on the scope of the ontology; classes that may be defined in one
ontology may be primitives in others. For instance, an ontology used in Hu-
man Geography research may declare the class Human as primitive, while an
ontology from the medical domain will define humans via parts of their bodies,
chemical processes, and so forth.

The ODOE framework proposes to semi-automatically derive ontological
primitives from the observation layer using methodologies such as machine learn-
ing, data mining, or geo-statistics. This bottom-up approach may seem like an
obvious step underlying all ontology engineering methodologies. However, in
fact, it is a radical change in the way how ontologies are developed in practice.
It restricts potential primitives to those that can either be directly observed,
i.e., those for which we have sensors, or those that can be derived from obser-
vation data, e.g., by aggregation. The resulting primitives and classes defined
based on them may be very different from those derived top-down. For instance,
primitives defining hills and mountains may be derived from digital elevation
data (Sinha and Mark, 2010b), while rivers and lakes may be distinguished by
observable characteristics such as length to width ratios (Bennett et al., 2008;
Santos et al., 2005). While the ODOE framework does not stipulate a spe-
cific method, we introduce a novel approach that we call semantic signatures to
illustrate this level.

One common way to understand the distribution of geographic features on
the surface of the Earth is remote sensing. Different types of land use/cover pro-
duce characteristic reflection and absorption patterns in different wavelengths,
called bands, of electromagnetic energy. In many cases, studying the reflection
values within a particular band, such as the visible light, is sufficient to distin-
guish between land use types such as hydrographic features versus soil. In other
cases, the reflection patterns become only distinguishable in the near infrared or
thermal band and, hence, multiple bands have to be sensed. A typical example
are conifers and deciduous trees which cannot be distinguished by comparing
the visible band alone; see figure 2. These unique patterns are referred to as
spectral signatures. The idea of signatures has also been successfully applied to
other domains such as Internet security, chemistry, and astrophysics.

This does not mean that ontologies are not necessary to describe land use
or other geographic feature types but that ontologies are about communication
and retrieval and not about replacing numerical models (Sheth et al., 2005).
The spectral signatures have to be named, e.g., Developed, Low Intensity (An-
derson et al., 1976; Homer et al., 2004), and the potential interpretations of
their plain text definitions have to be restricted and made machine-readable us-
ing ontologies to support data retrieval and integration. For example, the class
Developed, Low Intensity is vaguely defined as ’Includes areas with a mixture
of constructed materials and vegetation. Impervious surfaces account for 20-49
percent of total cover. These areas most commonly include single-family hous-
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Figure 2: Selected spectral signatures from the NASA ASTER Spectral Library.

ing units’.4 Similarly, the classification method used and the number of classes
are arbitrary to a certain degree and have to be documented and justified. Re-
cently, Gahegan et al. (2011) discussed the political and economic dimension of
choosing specific land use/cover classes in context of the Kyoto protocol.

Moreover, raw spectral signatures cannot be combined in a way to answer
queries about man-made land use types as this does not correspond to single
reflection patterns but to a set of land use/cover types connected by a common
creation history and function; see also (Barsalou et al., 2005). Previous work,
however, shows that a combination of ontologies, observation data, and rule
engines can be used to handle such queries (Henson et al., 2009; Keßler et al.,
2009; Devaraju and Kauppinen, 2012; in press). Another relevant example
are rivers which cannot be distinguished based on remote sensing data only.
The reflection values do not contain information about shape, water flow, and
topology, nor can they unveil thematic roles (Sowa, 2000) such as navigability.

To bridge the gap between numerical and statistical models and ontologies,
we propose to introduce the notion of semantic signatures as an analogy to
spectral signatures. For instance, POI type, such as Restaurant and University,
can be discriminated from others using signatures. Similarly, as a single band
may not be sufficient to establish a unique spectral signature, several semantic
characteristics may be required to create a semantic signature. While there are
multiple methods to compute and learn such signatures, we have shown how to
mine them from massive observation data created by smartphones for Location-
based Social Networks. We demonstrated how semantics-enabled geo-statistics
(Ahlqvist and Shortridge, 2006) can be used to compute a spatial (Mülligann
et al., 2011) and several temporal bands (Ye et al., 2011b,a). Ontological primi-

4http://www.mrlc.gov/nlcd definitions.php.
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(a) Spatial band (D0); 1000m (b) Day-hour temp. band; h=0.45

Figure 3: Spatial and temporal bands for the POI type University.

tives can be reified out of these bands. For instance, following figure 3, universi-
ties are spatially clustered with buildings of similar types (e.g., other university
buildings or libraries) and mostly visited during weekdays and working hours.
In contrast, bars show different clustering patterns and are mostly visited dur-
ing evenings and on weekends. Hence, while the primitives clustered, weekday,
and working hours can be used to describe universities, other POI types show
different characteristics. While most of the bands that we have studied so far
are robust, e.g., the spatial bands for university buildings from Münster, Ger-
many, London, UK, and New York City, US are very similar, bands are local.
For instance, they may differ between cultures. This should not be misunder-
stood as drawback but makes semantic heterogeneities explicit. Two datasets
that refer to the same class names, but have different signatures should only be
combined with care. So far, we have demonstrated how these bands can be used
for data cleaning, recommendation systems, and automatic semantic annotation
(Mülligann et al., 2011; Ye et al., 2011b).

Summing up, the ontological primitives extracted out of these bands allow
to define geographic feature types in a novel way. Instead of describing POI
types by walls, tables, or menus, they can be specified as clustered or uniformly
distributed, weekend or evening locations, and so forth. The classical definition
of geographic information consisting of a spatial, temporal, and thematic com-
ponent should not lead to the conclusion that those components are separated.
The thematic component may as well be described by spatial and thematic
characteristics.

Similarly, and to demonstrate that the proposed methodology is not re-
stricted to POI types, we are studying (Adams and Janowicz, 2012; forthcom-
ing) how a thematic band for geographic feature types can be learned out of
massive amounts of unstructured text, e.g., from Wikipedia and travelblogs,
using Latent Dirichlet Allocation (Blei et al., 2003). Figure 4, for instance,
shows first results for the Mountain type. Different characteristics of the stud-
ied observation data can be used to create signatures and, therefore, this choice
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Figure 4: A probability surface visualizing a thematic band for the Mountain
type learned from unstructured text by LDA and Kernel Density Estimations.

has to be documented as provenance information, see section 3. Combining the
different bands to even more discriminative semantic signatures if left for future
work.

Semantic signatures are not the only approach to construct primitives out of
observation data. Alternatively, one could also exploit the structure underlying
existing databases, transform their data to a machine-understandable language
such as RDF, and discover potential links to external sources. Several techniques
have been developed to support this so-called triplification process, examples
include Triplify (Auer et al., 2009) for publishing and the SILK framework (Volz
et al., 2009) for link discovery. Finally, scientific workflows and procedures (Gil
et al., 2011) offer an additional source that could be studied to derive ontological
primitives.

2.4 Geo-Ontology Design Patterns

Ontology Design Patterns (ODP) have been first proposed as an analogy to
the successful software engineering design patterns (Gamma et al., 1995) by
Gangemi (2005). Several types of patterns have been discussed in the litera-
ture, e.g., logical patterns, content patterns, or alignment patterns.5 Logical
patterns can be thought of as workarounds to solve problems that are a conse-
quence of the formal semantics of the knowledge representation language used.
Therefore, logical patterns are independent of specific domains or application
areas. In contrast, content patterns are building blocks or strategies that model
repeating domain facts, e.g., how to assign places to entities, or how to model
the movement of objects along a path. ODPs can vary in size and complexity
and can also be composed out of other patterns. However, in general, ontology
design patterns should be self-contained and directly applicable to increase their

5A collection of ontology design patterns can be found at http://

ontologydesignpatterns.org.
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reusability. As a consequence, ontology design patterns are developed by mini-
mizing the amount of ontological commitments. For instance, the Place pattern6

does not specify types of places nor does it restrict the introduced isLocationOf
relation to geographic space. Surprisingly, this reduction of ontological com-
mitments and not the coverage is the key difference between ontology design
patterns and top-level ontologies. Over the last years, the NEON project has
transformed many parts of the DOLCE Ultra Light foundational ontology into a
collection of patterns. Hence, while different content patterns can be combined
to a common alignment level to better integrating local ontologies, using a sin-
gle pattern does not force ontology users and engineers to understand and agree
with the overwhelming set of abstract ontological commitments introduced by
top-level ontologies.

Ontology design patterns can be developed following classical ontology engi-
neering methodologies such as Methontology; but what are potential candidates
for geo-ontology design patterns? While the pattern level cannot be matched to
any of Couclelis’ levels, Frank proposes to use so-called image schemata (John-
son, 1987) to ground semantics in physical operations. Over the years, some of
those image schemata have been formalized, e.g., by Kuhn (2007). While the
ODOE framework uses a different grounding approach, we believe that image
schemata can be thought of as strategies for reoccurring problems as well. For
instance, the Path image schema may form the basis of a transportation pattern.
The idea of geo-ontology design patterns is new and, therefore, only a few pat-
terns have been proposed so far, e.g., Ortmann and Daniel (2011) implemented
patterns for referential qualities, while Janowicz and Compton (2010) have de-
veloped the Stimulus-Sensor-Observation pattern (SSO).7 To give a concrete
example, and because the ODOE framework makes use of the SSO pattern to
establish data provenance, the last-mentioned will be discussed in more detail.

Figure 5: Concept map depicting the Stimulus-Sensor-Observation ontology de-
sign pattern without alignment to a top-level ontology (Janowicz and Compton,
2010).

The SSO pattern emerged from the need to reach an agreement between 24

6http://ontologydesignpatterns.org/wiki/Submissions:Place
7Geo-patterns for Points Of Interest, path & movement, as well as for events and change

have been proposed recently. The Simple Event Model (SEM) could also be considered as a
more complex pattern (van Hage et al., 2011).
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domain experts and ontology engineers from 15 different organizations in how to
develop a Semantic Sensor Network ontology (SSN) within the W3C SSN-XG
incubator group. The SSO pattern was proposed as a minimal and reusable
OWL ontology to form the core of the more complex SSN ontology and at
the same time serve the needs for light-weight ontologies for Linked Data. As
depicted in figure 5, the SSO pattern introduces 7 classes and relations between
them. It defines observations as a nexus that connects sensors, the stimuli they
receive and the results they produce in transforming the stimuli. It also states
that observations and sensors follow procedures that define how and what is
measured. For instance, a thermometer can be used to measure surface air
temperature or soil temperature. Therefore, an observation procedure has to
specify how the measurement should be performed (e.g., 2m above the ground)
to make the results reproducible and comparable. Additionally, sensors for the
same observable property can be constructed in different ways, e.g., based on
expansion versus resistance. Therefore, sensors implement certain procedures
which are required to make their results comparable. The pattern does not
include any ontological commitments on the nature of the proposed classes.
For instance, it does not define stimuli as events or restrict sensors to physical
objects. While this makes the SSO pattern flexible, reusable, and easy to extend,
it puts more burden on semantic interoperability. Two datasets can refer to
the same classes and still have radically different conceptualizations in mind.
To address these needs, the pattern was published together with an optional
alignment to the foundational ontology DOLCE (not shown in figure 5; details
are given in (Janowicz and Compton, 2010)). This alignment, for instance,
defines the class Stimulus to be a subclass of DOLCE’s Event class. While
this alignment allows to further restrict the potential interpretations of the
classes towards their intended meaning, it comes at the cost of accepting a
set of abstract ontological commitments (Guarino, 1998). For example, the
pattern alignment proposes to restrict sensors to physical objects and defines
observations as situations and, hence, social objects. While accepted for the
SSN ontology, other researchers have objected these alignments and proposed
to define observations as events and allow for virtual sensors as well.

For this reason, the alignment of ontology design patterns is optional in
the ODOE framework. Patterns are rather viewed as strategies which ease the
creation of application ontologies by non-experts. Consequently, geo-patterns
should build on the discussed observations and primitives levels.

2.5 Application Ontologies

The classification of ontologies based on their granularity and thematic scope
into top-level, domain, task, and application ontologies was first introduced by
Guarino (1998). Top-level ontologies, such as DOLCE (Masolo et al., 2002),
formalize generic knowledge about the world in an application and domain in-
dependent way. For instance, they introduce the distinction between endurants,
e.g., physical objects, and perdurants, e.g., events. Ontologies from lower levels
should align their conceptualization to those provided by the top-level to im-
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prove interoperability. A transportation domain ontology may define the class
TrafficJam as a subconcept of Perdurant. Domain ontologies specify the con-
cepts related to generic domains such as geography. In contrast, task ontologies
focus on generic and reoccurring activities such as travel and transportation.
Finally, Guarino defines application ontologies as specializations of domain and
task ontologies. For instance, an ontology-driven trip planning system may re-
fine the vocabularies coming from both the travel and the geography ontologies.
Nevertheless, the boundaries between the types of ontologies are rather fluid.

Figure 6: Types types of ontologies and their specialization relationships (based
on (Guarino, 1998)).

Top-down distinctions, e.g., the dichotomy between endurants and perdu-
rants, play a significant role in research on geospatial semantics but at the same
time are a major source of limitations. For example, lenticular clouds can be cat-
egorized as events or physical objects at the same time (Davidson, 1985; Galton,
2004). More recently, Sinha and Mark (2010a) demonstrated that geographic
feature types such as Hill can be described as a Physical Object, a Feature, or
an Amount of Matter. These classes are among the core distinctions proposed
by DOLCE for Physical Endurants. In other words, some geographic feature
types are multi-aspect phenomena (Galton, 2004) to a degree where even top-
level distinctions cannot be applied without reference to context. In practice,
trying to make a group of users, domain experts, or ontology engineers agree on
abstract concepts turns out to be the key obstacle in reaching agreement.

In reaction, Uschold (2000b) proposed a more flexible and pragmatic classi-
fication into local and global ontologies. The assumption that global ontologies
are, in fact, top-level ontologies while local ontologies are application ontologies
is misleading as both approaches focus on different aspects. A global ontology
can be on the domain level, but also on the level of a single company. All that
matters for characterizing global ontologies is that they are the common and
shared agreement of multiple units or working groups. If all departments of an
international company agree on a vocabulary this may be regarded as a global
ontology for this company. In contrast, local ontologies have to be aligned to
other local ontologies or to a global ontology (while global ontologies do not
require connections to further global ontologies as they are the primary source
of reference). Similar to Guarino’s classification, the distinction between global
and local ontologies is rather fluid.
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Infrastructures such as the envisioned Digital Earth have to query over mul-
tiple, highly heterogeneous ontologies. Hence, the ODOE framework proposes
to develop local, application-centric ontologies which arise from clear needs and
are a means to an end rather than ends in themselves. While these ontologies
can be developed following established methodologies such as Methontology,
a strict distinction between the roles of a user, domain expert, and ontology
engineer is no longer necessary. In fact, scientists should be able to develop
ontologies that document their datasets on their own.

2.6 Mappings

The ODOE frameworks proposes to formalize local ontologies arising from spe-
cific needs rather than a small set of top-down engineered and authoritative
ontologies. Consequently, the definitions of the same terms may differ or even
become incompatible. Strictly speaking, and to demonstrate the differences be-
tween both paradigms, a question such as ’what defines a river?’ cannot be
answered in a global knowledge infrastructure. Instead, one has to either ask
’What defines a river in Southern Europe?’ or ’what are the common character-
istics of European rivers?’. Therefore, ontology alignment and semantic trans-
lation become essential components of modern knowledge infrastructures (Cruz
and Sunna, 2008; Shvaiko and Euzenat, 2008; Schade, 2010). This also includes
work on ontology modularization and multi-perspective ontologies (Kokla and
Kavouras, 2001; Bateman et al., 2007). One may argue that it will not be possi-
ble to align all classes from different local ontologies. This, however, should not
be misunderstood as weakness of a mappings-based approach, to the contrary,
it prevents data that was created under different assumptions to be combined.
In the following, to demonstrate the feasibility of the mapping level, we briefly
introduce a methodology to structure local ontologies. While the presented ap-
proach makes use of ontology alignment, is also allows to semi-automatically
derive a global ontology bottom-up, e.g., out of the provenance data discussed
in section 3.

Integrating local views at a global level has been a core research theme for AI
since decades (McCarthy, 1987). While each of these views, also called contexts,
has to be a consistent theory, a global knowledge infrastructure does not need to
be contradiction free. Instead, the local views can be organized within an inter-
connected network. This approach has been first proposed and implemented for
the CYC knowledge base (Lenat, 1995). Similar principles, called domains, are
also underlying Freebase. CYC/OpenCYC structures knowledge into domain
specific microtheories. Each of these theories consists of a coherent set of state-
ments about classes and individuals and can store facts that are incompatible
with other microtheories. The theories are interconnected using a generalization
relation genlMt (McCarthy and Buvac, 1996), i.e., facts defined within a super-
microtheory must also hold for each of its sub-theories, while sibling-theories
may store contradicting facts. For an is-true-in relation ist(mt, p) between a
microtheory mt and a predicate p, genlMt is defined as the anti-symmetric, re-
flexive, and transitive binary predicate through which the hierarchy of theories
is constructed by adding axioms of the form defined in equation 1 to the root
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Figure 7: Lattices of microtheories structured using thematic generalization
(genlMt), generalization and spatial/administrative inclusion (genlMtS), as well
as generalization and temporal inclusion (genlMtT).

theory mt0; where mtg is the more general and mts the more specific theory
(Guha et al., 2004).

mt0 : ∀p ist(mtg, p) ∧ genlMt(mtg,mts) −→ ist(mts, p) (1)

As depicted in figure 7, a broad Geography microtheory may introduce a
generic notion of Place, while a microtheory developed for VGI may import
from this theory and refine the class Place by restricting it to those places
for which a location on the Earth’s surface can be defined. Moreover, the
VGI MT may introduce new classes, such as a Landmark class for pedestrian
navigation. A third microtheory developed for location hypotheses may built
upon Geography MT, but only cover places for which the location and their
existence is unknown. While the VGI MT and LH MT are generalized by the
Geography MT (shown by the dotted lines) and all their facts are not allowed
to contradict with the super-theory, the sibling theories (shown by the dashed
line) contain contradicting facts.

In previous work (Duce and Janowicz, 2010), we have extended the notion of
a lattice of theories by adding space and time as fundamental ordering principles.
Tobler’s First Law of Geography (Tobler, 1970) is not restricted to individuals;
different conceptualizations of feature types do not occur randomly but usu-
ally follow patterns that gradually change with increasing spatial and temporal
distance. To give a concrete example, the meaning of River changes gradually
from boreal climates, over maritime climates, to semiarid climates. Hence, as
a consequence of local geographies, Northern European countries may have dif-
ferent legal river definitions compared to those in southern Europe; see figure 7.
Similarly, and to give an example in which temporal aspects drive the diversifi-
cation of classes, cultural heritage researchers have to handle biased, incomplete,
and contradicting information. Therefore, an Ancient Times microtheory may
allow for unnatural life spans of historic persons and also allow them to be at
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different location at the same time. A Modern Era microtheory may exclude
such cases and also differ in definitions of transportation infrastructure or set-
tlements. Applying a modern definition of City to ancient settlements may be
inappropriate.

We have demonstrated how this approach can account for local diversity
while maintaining global interoperability for the European Inspire8 initiative
(Duce and Janowicz, 2010). By creating a lattice of microtheories we ensured
that feature types defined by member states that are administratively contained
within the European Union must be sub-classes of an EU-wide definition. How-
ever, instead of imposing a common schema for all European member states
top-down, we used local conceptualizations together with Least Common Sub-
sumer (LCS) (Cohen et al., 1992) and similarity reasoning (Janowicz et al.,
2011b) to semi-automatically infer an appropriate top-level that does not vio-
late local definitions. While LCS reasoning is used to infer a top-level via the
commonalities of the local definitions, similarity reasoning was used to measure
and adjust how much information gets lost to reach this common top-level; see
(Duce and Janowicz, 2010) for details.

Compared to the other frameworks, while Frank’s work explicitly acknowl-
edges the role of context in the social reality tier (3), it does not propose how
to define semi-automatic mappings.

3 Provenance

While we have discussed the steps involved in moving up the layers, the reverse
way is of equal importance. In fact, data provenance (Sahoo et al., 2008) is
one of the core motivations for creating the ODOE framework. Each transition
between layers involves certain arbitrariness. For instance, there are multiple
data mining and learning methods to classify data and, hence, to construct
primitives. The geo-ontology design patterns can be combined in different ways
to construct application ontologies, and the choice of an alignment methodology
influences the relationship between local ontologies. Consequently, provenance
information is required to make these decisions explicit and accessible (Hartig,
2009). When using scientific data, researchers should be able to deconstruct
categorical information down to the sources, i.e., observations, it was derived
from. While a detailed introduction to provenance research for the Semantic
Web and e-Science is out of scope for this work, the following subsections give
an intuition and examples of how provenance information can be collected and
encoded on the different levels of the framework.

3.1 Provenance on the Mapping Level

While the formal characterization of different ontology alignment and match-
ing operations has been an active research area, leveraging this information
for the purpose of provenance has received less attention; an exception being

8The Infrastructure for Spatial Information in the European Community
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the work of Zimmermann et al. (2006). So far, formal approaches, e.g., based
on category-theory, have been proposed to understand and compare different
methodologies. This line of research is especially important for benchmarking
different approaches as well as for reasoning why they produce different results.
For the purpose of the ODOE framework, the documentation aspect is more
relevant. If scientific data is annotated by combining different ontologies, users
have to be aware that another alignment methodology may have constructed
slightly different mappings. While a formal characterization is the first step, the
question of how to integrate the alignment provenance, e.g., matching probabil-
ities, with provenance ontologies (Moreau et al., 2011; Hartig and Zhao, 2011)
is an open research question.

To give a concrete example, a local ontology o1 containing the classes River
and Creek may have to be aligned with another ontology o2 that only contains
the class Stream. Even if we restrict this example to subsumption and equiv-
alence matches and leave cases such as skos:closeMatch (Miles and Bechhofer,
2008) aside, several alignments are possible. Let us further assume that the
classes and roles, e.g., Watercourse and hasOrigin, used for the definition of
these three classes have been successfully matched in os. A purely TBox-driven
alignment method may, based on the statements 2, 3, and 4, classify Stream
as the superclass of River and Creek. In contrast, an alignment method that
also takes ABox knowledge into account may produce a different result. For
instance, if most streams in o2 are classified as belonging to a transportation
network, and this relation can be successfully matched to the navigability class
in o1. In such a case, River may still be a subclass of Stream, while Creek would
be a sibling class.

o1 : River v os : Watercourseu∃os : hasOrigin(os : Spring)uos : Navigableu... (2)

o1 : Creek v os : Watercourse u ∃os : hasOrigin(>) u ¬os : Navigable u ... (3)

o2 : Stream v os : Watercourse u ∃os : hasOrigin(>) u ... (4)

3.2 Provenance on the Ontology Level

Application ontologies reflect the local conceptualizations underlying categori-
cal data. Hence, they can be regarded as provenance information in their own
rights. The ontology design patterns used to construct these ontologies are
imported and, therefore, also directly available as additional sources of prove-
nance. However, metadata on how the application ontologies were constructed,
their degree of formalization, used language, authors, change logs, and also the
applied ontology engineering methodology are still relevant. The need for mak-
ing this information explicit and accessible has been recognized within the last
years which resulted in the development of the Ontology Metadata Vocabulary
(OMV) (Hartmann et al., 2005).
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To give a concrete example, the following listing shows metadata created
using the OMV for a POI ontology. Note that resources such as ApplicationOn-
tology, OWL-DL, or Vocabulary are provided by OMV, while others, such as
VGI, have to be defined. The metadata also shows that the ontology imports a
design pattern for places.

<Ontology rdf:ID="OSMPOI">

<acronym rdf:datatype="&xsd;string">OSM-POI</acronym>

<creationDate rdf:datatype="&xsd;string">12-13-2011</creationDate>

<description rdf:datatype="&xsd;string"

>Ontology for OpenStreetMap Points of Interest</description>

<hasCreator rdf:resource="#KJano"/>

<hasDomain rdf:resource="#VGI"/>

<useImports rdf:resource="#GODP_Place"/>

<hasFormalityLevel rdf:resource="#Vocabulary"/>

<hasLicense rdf:resource="#GeneralPublicLicense_GPL"/>

<hasOntologyLanguage rdf:resource="#OWL-DL"/>

<hasOntologySyntax rdf:resource="#OWL-XML"/>

<isOfType rdf:resource="#ApplicationOntology"/>

<name xml:lang="en">OpenStreetMap POI Ontology</name>

<version rdf:datatype="&xsd;string">1</version>

</Ontology>

While the provided metadata can assist researcher in understanding how the
ontology was developed, aspects such as the geographic bounding box specified
by the ISO 19115 metadata standard are missing so far. The bounding box of
an application ontology could, for instance, be defined via the locations of the
observations or features of interest instantiated within the ontology or used for
the construction of the primitives.

Ontology design patterns are best thought of as strategies, but are ontologies
in their own rights. Hence, metadata for them can be provided using the OMV
as well. From a provenance perspective, the only notable difference is that the
number of patterns is small compared to the number of application ontologies
and existing libraries document those patterns in detail.

3.3 Provenance on the Primitives Level

The ODOE framework proposes to use methodologies such as data mining,
machine learning, and geo-statistics to construct ontological primitives out of
observation data. As primitives are those classes for which no further definitions
can be given within the ontology, provenance information can be gathered by
deconstructing primitives back to the data they were created from. The idea
of sharing the used methods and models online to make scientific results repro-
ducible is not new. It plays a key role in e-Science and the Model Web (Pebesma
et al., 2010; Brodaric and Gahegan, 2010). The Mathematical Markup Language
(MathML) may provide a starting point, however, the representation of mathe-
matical knowledge on the Semantic Web is still an open research question. An
overview on the state of the art and a roadmap for future work have been re-
cently presented by Lange (2012; in press). In terms of provenance, the core
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challenge will be to represent the complex workflows used to learn the primi-
tives. This includes more than the representation of the used algorithms, but
also the used sampling strategies or parameter settings.

3.4 Provenance on the Observations Level

The ODOE framework proposes to model observations using the SSO ontol-
ogy design pattern. Each observation can be either stored as a collection of
assertions in a triple store or as record in a Sensor Web Enablement service.
In the last-mentioned case, semantic annotations can be used to connect the
observations to the ontologies. Therefore, while not always necessary, scholars
can decompose ontologies down to single observations to understand nominal
data and uncover hidden incompatibilities. As argued before, the interpretation
of observations may require information on the used procedures. These pro-
cedures, however, cannot be defined within ontologies as this would lead to a
regress loop and is at the core of the symbol grounding problem (Harnad, 1990).
Therefore, observation and construction procedures form the boundary of the
ODOE framework. Recently, Scheider (2011) proposed to ground observations
in perceptual operations.

4 Conclusions and Outlook

In this work we have introduced a novel framework for the engineering of ontolo-
gies out of observation data. Instead of arguing for a small and authoritative set
of global ontologies that have to address issues of vagueness and uncertainty due
to their context-independent nature, we propose to develop small but crisp on-
tologies that emerge from application needs and are derived bottom-up. Starting
with the formal specification of sensors and their observations, the framework
proposes to employ geo-statistics, data mining, and machine learning to con-
struct ontological primitives. These primitives are integrated with geo-ontology
design patterns, which, due to their minimal amount of ontological commit-
ments, act as flexible and reusable building blocks for local ontologies, called
microtheories. The patterns take the role of classical top-level ontologies in
providing a common level to ease ontology alignment. These alignments allows
to match and integrate local ontologies within a lattice of theories. In addi-
tion, the framework also discusses how to deconstruct ontologies to derive the
provenance information necessary to uncover hidden incompatibilities between
datasets. Summing up, the presented framework accounts for local semantic
diversity without giving up interoperability on the global level. To foster re-
trieval and reuse, scientists should avoid annotating their data with classes that
are loaded in terms of their ontological commitments, and, instead, prefer those
classes that can be deconstructed to observations. In this respect, dynamic
typing as known from software engineering seems more appropriate. For exam-
ple, whether a certain area with a high density of trees is a forest, should be
determined when accessing the data (in the context of a local ontology).
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While we argue that the ODOE framework makes ontology engineering ready
for the age of data intensive science, a lot of research remains to be done. To
demonstrate how the framework can be used, we introduced a specific method-
ologies as realizations of each of the proposed layers. However, these method-
ologies, while successfully applied to specific use cases, are still research topics
themselves. For example, we have shown that the spatial and temporal bands
for the semantic signatures can be successfully applied to tasks such as the auto-
matic semantic annotations of Points of Interest (Ye et al., 2011b). The combi-
nation of multiple bands and the extraction of topic bands out of unstructured
text using LDA is ongoing. It is also not clear how to develop scale invariant
signatures. One reason for the success of spectral signatures are open libraries
that allow scholars to reuse and exchange signatures. Therefore, we hope that
the development of an open semantic signatures library will boost their usage
in the future. As the bands are created out of massive real world data, they
may also act as baseline for future semantic accuracy measures. Similarly, while
ontology design patterns have been successfully applied in ontology engineering,
patterns specific to the needs of geographic information are largely missing and
have to be developed. It is important that such geo-patterns are closely tied to
the observations and primitives levels. For instance, a Point of Interest pattern
may describe places by their boundaries and define those in terms of spatial and
temporal constraints using the semantic signatures. Moreover, while the ODOE
framework does not stipulate specific methodologies, further work is required to
understand which methods can be most successfully combined to meet specific
application or domain needs. The final evaluation of an ontology engineering
framework can only be performed by using it in different settings over a long
period. Provenance is a key component of the proposed framework. While we
have introduced the current state of the art, the discussion also shows that more
research is necessary.

Finally, data intensive science was one of the key motivations for developing
the framework. However, Big Data is not without problems, e.g., with respect
to ethical questions or the problem of sampling (Boyd and Crawford, 2011).
What are the challenges for a data-intensive Geographic Information Science?
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K. Janowicz, S. Schade, A. Bröring, C. Keßler, P. Maue, and C. Stasch. Semantic
enablement for spatial data infrastructures. Transactions in GIS, 14(2):111–
129, 2010.
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ceedings of the Workshop ”Environmental Information Systems and Services
- Infrastructures and Platforms” Workshop at EnviroInfo2010, volume 679.
CEUR-WS, 2010.

F. Probst and M. Espeter. Spatial dimensionality as a classification criterion for
qualities. In B. Bennett and C. Fellbaum, editors, International Conference
on Formal Ontology in Information Systems (FOIS 2006), volume 150 of
Frontiers in Artificial Intelligence and Applications, pages 77–88. IOS Press,
2006.

27

http://www.w3.org/TR/skos-reference/


M. Raubal. Formalizing conceptual spaces. In A. C. Varzi and L. Vieu, editors,
Formal Ontology in Information Systems, Proceedings of the Third Interna-
tional Conference (FOIS 2004), pages 153–164. IOS Press, 2004.

L. Richardson and S. Ruby. RESTful Web Services. O’Reilly Media, Inc., 2007.
ISBN 0596529260.

S. Sahoo, A. Sheth, and C. Henson. Semantic provenance for escience: Managing
the deluge of scientific data. IEEE Internet Computing, pages 46–54, 2008.

P. Santos, B. Bennett, and G. Sakellariou. Supervaluation semantics for an
inland water feature ontology. In Proceedings of the 19th international joint
conference on Artificial intelligence, IJCAI’05, pages 564–569, San Francisco,
CA, USA, 2005. Morgan Kaufmann Publishers Inc.

S. Schade. Ontology-Driven Translation of Geospatial Data. PhD Thesis, Uni-
versity of Münster, Germany. IOS Press, Amsterdam, The Netherlands, 2010.
ISBN 978-1-60750-071-1.

S. Scheider. Grounding Geographic Information in Perceptual Operations. PhD
Thesis, Institute for Geoinformatics, University of Münster, Germany. Avail-
able online at geographicknowledge.de/pdf/MyThesis.pdf., 2011.

S. Scheider, K. Janowicz, and W. Kuhn. Grounding geographic categories in
the meaningful environment. In K. Hornsby, C. Claramunt, M. Denis, and
G. Ligozat, editors, Conference on Spatial Information Theory (COSIT 2009),
volume 5756 of LNCS, pages 69–87. Springer, 2009.

N. Schuurman. Formalization matters: Critical gis and ontology research. An-
nals of the Association of American Geographers, 96(4):726–739, 2006.

A. Sheth, C. Ramakrishnan, and C. Thomas. Semantics for the semantic web:
the implicit, the formal and the powerful. International Journal on Semantic
Web and Information Systems, 1:1–18, 2005.

P. Shvaiko and J. Euzenat. Ten Challenges for Ontology Matching. In R. Meers-
man and Z. Tari, editors, On the Move to Meaningful Internet Systems: OTM
2008, volume 5332 of LNCS, pages 1164–1182. Springer, 2008.

G. Sinha and D. Mark. Toward a foundational ontology of the landscape. In
Extended Abstracts of GIScience 2010, 2010a.

G. Sinha and D. Mark. Cognition-based extraction and modelling of topographic
eminences. Cartographica, 45(2):105–112, 2010b.

J. F. Sowa. Knowledge Representation: Logical, Philosophical and Computa-
tional Foundations. Brooks Cole Publishing Co., Pacific Grove, CA, USA,
2000.

W. Tobler. A computer model simulating urban growth in the detroit region.
Economic Geography, 46(2):234–240, 1970.

28

geographicknowledge.de/pdf/MyThesis.pdf


M. Uschold. Creating, integrating and maintaining local and global ontologies.
In W Horn, editor, Proceedings of 14th European Conference on Artificial
Intelligence (ECAI’00), Berlin, Amsterdam, 2000a. IOS Press.

M. Uschold. Creating, integrating and maintaining local and global ontologies.
In 14th European Conference on Artificial Intelligence (ECAI 2000), Berlin,
Germany, August 2000b.

R. van Hage, V. Malaise, R. Segers, L. Hollink, and G. Schreiber. Design and
use of the simple event model (sem). Web Semantics: Science, Services and
Agents on the World Wide Web, 9(2), 2011. ISSN 1570-8268.

J. Volz, C. Bizer, M. Gaedke, and G. Kobilarov. Silk – a link discovery frame-
work for the web of data. In 2nd Workshop about Linked Data on the Web
(LDOW2009), Madrid, Spain, April 20-24, 2009, pages 621–630. ACM, 2009.

I. Wachsmuth. The concept of intelligence in AI. Prerational Intelligence –
Adaptive Behavior and Intelligent Systems without Symbols and Logic, 1:43–
55, 2000.

D. Weinberger. Too Big To Know. Basic Books, New York, 2011.
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