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Abstract:

Traditional  gazetteers  are  built  and  maintained  by  authoritative  mapping

agencies.  In  the  age  of  Big  Data,  it  is  possible  to  construct  gazetteers  in  a

data-driven approach by mining rich volunteered geographic information (VGI)

from the Web. In this research, we build a scalable distributed platform and a

high-performance geoprocessing workflow based on the Hadoop ecosystem to

harvest crowd-sourced gazetteer entries. Using experiments based on geotagged

datasets in Flickr, we find that the MapReduce-based workflow running on the

spatially enabled Hadoop cluster can reduce the processing time compared with

traditional desktop-based operations by an order of magnitude. We demonstrate

how to use such a novel spatial-computing infrastructure to facilitate gazetteer

research. In addition, we introduce a provenance-based trust model for quality

assurance. This work offers new insights on enriching future gazetteers with the

use of Hadoop clusters, and makes contributions in connecting GIS to the cloud

computing environment for the next frontier of Big Geo-Data analytics. 

Keywords:  Gazetteers; Volunteered Geographic Information; Hadoop; Scalable

Geoprocessing Workflow; Big Geo-Data; CyberGIS
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1. Introduction

Place  is  a  fundamental  concept  in  daily  life  and  reflects  the  way  humans

perceive, experience and understand their environment (Tuan, 1977). Place names are

pervasive in human discourse, documents, and social media when location needs to be

specified  and  referred  to.  Digital  gazetteers  are  dictionaries  of  georeferenced  place

names, and play an important role in geographic information retrieval (GIR), in digital

library services, and in systems for spatio-temporal knowledge organization (Hill, 2006;

Goodchild & Hill,  2008; Li,  Yang, & Zhou, 2008; Li, Raskin, & Goodchild; 2012).

Several well-known authoritative digital  gazetteers have been developed such as the

Alexandria digital library (ADL) gazetteer at the University of California Santa Barbara

(Hill, Frew, & Zheng, 1999; Goodchild, 2004), the Getty Thesaurus of Geographical

Names (TGN) at the Getty Research Institute, the gazetteer maintained by the US Board

on Geographic Names (BGN), and a Chinese gazetteer, KIDGS, at Peking University

(Liu et al., 2009b). Such authoritative projects require expert teams to make lengthy

efforts  and  the  maintenance  costs  are  high,  thus  often  leading  to  lengthy delays  in

updating the databases.

With the emergence of the social Web, new forms of crowd-sourced gazetteers

have  become possible.  They  can  be  categorized  in  two types.  One  is  collaborative

mapping  platforms,  such  as  Wikimapia1 and  OpenStreetMap  (OSM)2,  in  which

volunteers  create  and  contribute  geographic  features  and  detailed  descriptions  to

websites where the entries are synthesized into databases. The other way is socially

constructed place, that is, gazetteer entries constructed from the Web documents and

diverse social-media sources (such as Facebook, Twitter, Foursquare, Yelp, and Flickr)

1 http://www.wikimapia.org

2 http://www.openstreetmap.org
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where the general public uses place names, describes sense of place, and makes diverse

comments according to their experiences (Uryupina, 2003; Jones et al., 2008; Goldberg,

Wilson, & Knoblock, 2009; Li, Goodchild, & Xu, 2013). Note that the term gazetteer in

this paper also includes point of interest (POI) databases such that the P stands for place

not point. By mining such rich resources, it is possible to construct or enrich gazetteers

in  a  bottom-up  approach  instead  of  in  a  traditional  top-down  approach  (Adams  &

Janowicz, 2012; Adams & McKenzie, 2013). However, the data mining and harvesting

processes are computationally intensive. Especially in the age of Big Data, the volume,

the updating velocity, and the variety of data are too big, too fast and too (semantically

and  syntactically)  diverse  for  existing  tools  to  process  (Madden,  2012).  In  the

GIScience/GIS community, researchers may not be willing to wait for weeks or longer

to  process  the  terabyte  or  petabyte-scale  geotagged  data  streams.  Fortunately  the

emerging  cloud-computing  technologies  offer  scalable  solutions  for  some  of  the

processing problems in Big Data Analytics. 

In this research, we present a novel approach to harvest crowd-sourced gazetteer

entries  from  social  media  and  to  conduct  high-performance  spatial  analysis  in  a

cloud-computing environment. The main contribution of this paper is two-folds: First, it

introduces the design and implementation of a scalable distributed-platform based on

Hadoop for processing Big Geo-Data and facilitating the development of crowd-sourced

gazetteers. Second, it provides valuable demonstrations about how to efficiently extract

multiple  feature  types  of  gazetteer  entries  at  multiple  scales  and  how  to  integrate

emerging data and technologies to improve GIScience research.

The rest of the paper is organized as follows. In Section 2, we introduce some

relevant  work  about  space  and  place,  gazetteers,  VGI,  and  Big  Data,  as  well  as

cloud-computing  infrastructures,  to  help  understand  the  challenges  involved  in  the
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presented  research.  In  Section  3,  we  design  and  implement  a  novel  Hadoop-based

geoprocessing platform for mining, storing, analyzing, and visualizing crowd-sourced

gazetteer  entries;  this  is  followed  by  experiments  and  results,  as  well  as  a  trust

evaluation  in  Section  4.  We conclude  the  paper  with  discussions  and directions  for

future research (Section 5). 

2. Related work

In this section we briefly point to related work and background material.

2.1 Space and place

Space and place are two fundamental concepts in geography, and more broadly in the

social  sciences,  the  humanities,  and  information  science  (Tuan,  1977;  Harrison,  &

Dourish,  1996;  Goodchild  &  Janelle,  2004;  Hubbard,  Kitchin,  &  Valentine,  2004;

Agnew, 2011; Goodchild, 2011). The spatial perspective is studied based on geometric

reference systems that include coordinates, distances, topology, and directions; while

the alternative “platial” (based on place) perspective is usually defined by textual place

names, linguistic descriptions, and the semantic relationships between places (Janowicz,

2009;  Goodchild  and Li,  2012a;  Gao et  al.,  2013).  There  would  not  be  any places

without people’s perception and cognition.  As argued by Tuan (1977), it  is humans’

interactions and experiences that turn space into place. Place is not just a thing in the

world but  a social  and cultural  way of understanding the world.  Giving names and

descriptions to locations is a process to make space meaningful as place. Social-tagging,

tweets, photo sharing, and geo-social check-in behaviors have created a large volume of

place descriptions on the Web.

Researchers  have  made  significant  efforts  toward  georeferencing  place
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descriptions and processing spatial queries, such as using ontologies of place (Jones,

Alani, & Tudhope, 2001), using a qualitative spatial reasoning framework (Yao & Thill,

2006),  using  fuzzy  objects  (Montello  et  al.,  2003),  using  probability  models  in

combination with uncertainty (Guo, Liu, & Wieczorek, 2008; Liu et al., 2009a), using

kernel-density estimation (Jones et al., 2008), using description logics (Bernad et al.,

2013), as well as knowledge discovery from data techniques for platial search (Adams

& McKenzie, 2012). Recently, a review by Vasardani, Winter, and Richter (2013) has

suggested  that  a  synthesis  approach  would  provide  improvements  in  locating  place

descriptions, and that new opportunities exist in identifying places from public media

and volunteered sources by using Web-harvesting techniques.

2.2 Gazetteers

Existing  GIS and spatial  databases  are  mature  in  representing  space,  but  limited  in

representing place. In order to locate place names on a map with precise coordinates and

to  support  GIR,  efforts  have  been  taken  to  convert  place  to  space.  One  major

mechanism is the use of gazetteers, which conventionally contain three core elements:

place names (N), feature types (T), and footprints (F) (Hill, 2000). A place name is what

people search  for  if  they intend to  learn  about  a  place,  especially  its  location,  in  a

gazetteer. A place type is a category picked from a feature-type thesaurus for classifying

similar places into groups according to explicit or implicit criteria. Janowicz and Keßler

(2008) argued that an ontological approach to defining type classifications will better

support  gazetteer  services,  semantic  interoperability  (Harvey  et  al.,  1999;  Scheider,

2012), and semi-automated feature annotation. A footprint is the location of a place, and

is almost always stored as a single point which represents an extended object as an

estimated center, or the mouth in the case of a river. Recent work is providing additional

spatial footprints including polygons and part-of relations.
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One major role of a gazetteer is thus to link place names to location coordinates.

For  example,  the ADL model  which links  places  to  spatially  defined digital  library

resources requires a comprehensive gazetteer as part  of its  spatial  query function to

provide  access  to  web services,  including collections  of  georeferenced photographs,

reports relating to specific areas, news and stories about places, remote sensing images,

or even music (Goodchild, 2004). The minimum required elements of a place in ADL

model are represented by the triples <N, T, F>. As a start, ADL combines two databases:

the  Geographic  Names  Information  System  (GNIS)  and  the  Geographic  Names

Processing System (GNPS), both from US federal-government agencies. Frequently, it

is necessary to consult and combine results from multiple gazetteer sources, which is

generally  described  as  (feature)  conflation  (Saalfeld,  1988).  Hastings  (2008)  has

proposed  a  computational  framework  for  automated  conflation  of  digital  gazetteers

based on three  types  of  similarity  metrics:  geospatial,  geotaxial,  and geonomial.  In

addition, efforts have been made in mining gazetteers semi-automatically from the Web

(e.g.,  Uryupina,  2003;  Goldberg,  Wilson,  &  Knoblock,  2009).  Challenges  such  as

interoperability  and  quality  control  need  to  be  investigated  in  such  crowd-sourced

gazetteers.  The conflation of POI databases is widely considered an important next

research  step  to  combine  the  different  attributes  stored  by  various  systems to  more

powerful joint database.

2.3 Big Data and VGI

Big Data is  used to describe the phenomenon that large volumes of data  (including

structured,  semi-structured,  and  unstructured  data)  on  various  aspects  of  the

environment and society are being created by millions of people constantly, in a variety

of formats such as maps, blogs, videos, audios, and photos. Big Data is “big” not only

because it involves a huge amount of data, but also because of the high dimensionality
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and inter-linkage of a multitude of (small)  datasets  that cover multiple perspectives,

topics, and scales (Janowicz et al., 2012). The Web has lowered previous barriers to the

production,  sharing,  and  retrieval  of  varied  information  linked  to  places.  VGI

(Goodchild,  2007),  a  type  of  user-generated  content  (UGC)  with  a  geospatial

component,  has  gradually  been  taking  the  lead  as  the  most  voluminous  source  of

geographic data. For example, there were over 20 million geographic features in the

database of Wikimapia at the time of writing, which is more than many of the world’s

largest gazetteers. In addition to features with explicit locational information stored in

geodatabases, places are also mentioned and discussed in social media, blogs, and news

forums, etc., but many of the places referenced in this way do not appear in official

gazetteers. This type of unstructured geographic information is rich and abundant, with

a great potential to benefit scientific research and decision making.

This phenomenon provides a great potential to advance research on gazetteers.

Although gazetteers provide a convenient way to link place names and locations, there

are  limitations  in  official  place  descriptions.  The  intended  use  of  an  authoritative

gazetteer is to facilitate communication between government agencies, so only clearly

defined geographic  features  that  are  important  for  policy  making  are  included,  e.g.

administrative divisions and boundaries. Some places that are commonly referred to in

daily conversations may not be considered (e.g., coffee shops). In addition, new place

names emerging from popular cultures cannot be added to an official  gazetteer in a

timely  manner  because  it  is  time-consuming  to  make  changes  by  holding  board

meetings to discuss adjustments. Another missing function of official gazetteers is the

representation of vague spatial extents of places. Fortunately, the limitations of official

gazetteers might be partially complemented by integrating new sources based on VGI.

For  example,  Keßler,  Janowicz,  and Bishr  (2009)  have  proposed  an  agenda  for  an
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infrastructure  of  next-generation  gazetteers  which  allow bottom-up  contributions  by

incorporating volunteered data. 

2.4 Cloud computing and CyberGIS

Cloud  computing  services  and  their  distributed  deployment  models  offer  scalable

computing  paradigms  to  enable  Big  Data  processing  for  scientific  researches  and

applications (Armbrust et al., 2010; Ostermann et al., 2010), thus offering opportunities

to advance gazetteer research. Some representative cloud systems and the characteristics

of clusters, grids, cloud systems have been carefully examined by Buyya et al. (2009).

Cloud services  can be categorized into three main types:  infrastructure as  a service

(IaaS), platform as a service (PaaS) and software as a service (SaaS). IaaS, as used in

this work, provides the access to computing hardware, storage, network components and

operating systems through a configurable virtual server. An IaaS user can operate the

virtual  server, install  software  tools,  configure  firewalls,  and run model  simulations

remotely  as  easily  as  accessing  a  physical  server.  More  importantly,  it  is  more

convenient for researchers to utilize these scalable cloud-computing resources with the

availability of low-cost, on-demand IaaS such as the Web services of the Amazon elastic

computing cloud (AWS EC2) and Amazon simple storage service (Amazon S3). 

In  the  geospatial  research  area,  cloud  computing  has  attracted  increasing

attention as a way of solving data-intensive, computing-intensive, and access-intensive

geospatial  problems  (Yang  et  al.,  2011a).  For  example,  in  order  to  enhance  the

performance  of  a  gazetteer  service,  Gao  et  al.  (2010)  designed  a  resource-oriented

architecture in a cloud-computing environment to handle multiple levels of place-name

queries. Yang et al.  (2011b) presented how spatial computing facilitates fundamental

physical science studies with high-performance computing capabilities. The emerging

concept  of  CyberGIS,  which  synthesizes  cyberinfrastructure,  spatial  analysis,  and
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high-performance  computing,  provides  a  promising  solution  to  aforementioned

geospatial problems as a cloud service (Yang et al., 2010; Wang, 2010; Li et al., 2013).

Scalable and efficient geo-processing is conducted on the high-end computing facilities

and released as standard Web services; a Web portal is provided to Internet users to

interact with the servers,  upload/download raw data,  perform analysis, and visualize

results. From this perspective, the CyberGIS gateway can be considered a combination

of IaaS, PaaS, and SaaS and its architecture provides guidance for establishing other

cloud geoprocessing platforms. Several works conducted on the CyberGIS platform for

Big  Geo-Data  analysis  are  presented  in  literature.  For  instance,  Rey  et  al.  (2013)

discussed  the  parallelization  of  spatial  analysis  library—PySAL  in  multiple-core

platforms. Liu and Wang (2013) described the implementation of a scalable  genetic

algorithm in HPC clusters for political redistricting. Wang et al. (2013) reviewed several

key CyberGIS software and tools regarding the integration roadmap. 

There are many Big Data analytics platforms and database systems emerging in

the new era, such as Teradata data warehousing platform, MongoDB No-SQL database,

IBM InfoSphere, HP Vertica, Red Hat ClusterFS  and Apache Hadoop-based systems

like  Cloudera and  Splunk Hunk.  They can be classified into two categories:  (1) the

massively parallel processing data warehousing systems like Teradata are designed for

holding large-scale structured data and support SQL queries; and (2) the distributed file

systems like Apache Hadoop. The advantages of Hadoop-based systems mainly lie in its

high  flexibility,  scalability,  low-cost,  and  reliability  for  managing  and  efficiently

processing a large volume of structured and unstructured datasets, as well as providing

job  schedules  for  balancing  data,  resource  and task  loads.  A MapReduce  paradigm

(more details in Section 3) implemented on Hadoop helps shift processing jobs to other

connected nodes if one fails, such that it is inherently fault-tolerance. Compared with
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parallel relational-database-management-systems (DBMS) which perform excellently in

executing a variety of data-intensive query processing benchmark (Pavlo et al., 2009),

the Hadoop ecosystem is more optimized for computationally intensive operations such

as geometric computations (Aji et al., 2013). However, such platforms have not been

utilized thoroughly to process crowd-sourced Big Geo-Data, and little research has been

conducted to construct gazetteers using such advanced cloud-computing platforms. In

this  research,  we present  how to  build  a  scalable  platform in  detail  to  harvest  and

analyze crowd-sourced gazetteer entries based on the geoprocessing-enabled Hadoop

ecosystem (GPHadoop).

3. The Hadoop-based processing platform

In this section we discuss the role and setup of Hadoop for the presented research.

3.1 System architecture

The goal of this processing platform is to provide a scalable, reliable, and distributed

environment for mining, storing, analyzing, and visualizing gazetteer entries extracted

from  various  Web  resources  (e.g.,  semi-structured  geotagged  data  or  unstructured

documents). The system should also have the capability of processing geospatial data

and an easy-to-use, configurable user interface to submit processing jobs and to monitor

the status of the system. The open-source Hadoop is an ideal choice, since it provides a

distributed  file  system  and  a  scalable  computation  framework  by  partitioning

computation  processes  across  many  host  servers  which  are  not  necessary

high-performance computers (White, 2012). More importantly, the  move-code-to-data

philosophy which  applies  within the  Hadoop ecosystem will  improve the  efficiency

since it  usually takes more time to move voluminous data across a network than to

apply the computation code to them. However, raw Hadoop-based systems usually lack
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powerful statistics and visualization tools (Madden, 2012). Therefore, we cannot use the

raw Hadoop Cluster directly for Big Geo-Data analytics. Alternatively, we integrate the

recently  released  Esri  Geometry  APIs3 to  spatially  enable  the  Hadoop  cluster  for

scalable processing of geotagged data from VGI sites and automatically link the results

to an ArcGIS Desktop for visualization. 

Fig. 1. System architecture

Fig.  1 demonstrates  the  system architecture  of  our  Hadoop-based distributed

geoprocessing platform (GPHadoop). It is composed of four modules: a Web crawler, a

Hadoop cluster, a user interface supported by Cloudera and a GIS client.  

(1) The Web crawler is a search engine written in Python to download place data

from the Web and store them on the server. The Web crawler can process two types of

3 https://github.com/Esri/geometry-api-java
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data  streams:  unstructured  textual  place  descriptions  from  Web  documents  or

semi-structured data extracted from social media, e.g., Twitter’s geotagged tweets and

Flickr’s geotagged photos4.  Note that pre-processing and filtering (such as removing

invalid coordinates) is necessary.

(2) The Hadoop Cluster is the corpus of all server nodes within a group (their

physical  locations  can  differ)  on  Hadoop.  Two Hadoop  components  --  the  Hadoop

distributed  file  system  (HDFS)  and  the  MapReduce  programming  model  --  are

implemented on our platform. HDFS is a distributed storage system for reliably storing

and streaming petabytes of both unstructured and structured data on clusters (Shvachko

et al., 2010). HDFS has three classes of nodes in each cluster: 

• Name node: responsible for managing the whole HDFS metadata like permissions,

modification  and  access  times,  namespace  and  disk  space  quotas.  The  most

important role is to support the Web-HDFS access from the client via the cluster’s

public hostname, e.g. namenode.geog.ucsb.edu.
• Secondary name node: responsible for checking the name node's persistent status

and periodically downloading current name-node image and log files; it cannot play

the role of the primary name node. 
• Data nodes: responsible for storing the unstructured file data or other structured data

such as spreadsheets, XML files, and tab-separated-value files (TSV) in which the

geotagged datasets have been stored. HDFS stores these files as a series of blocks

(the unit of storage), each of which is by default 64MB (or 128MB) in size.

The MapReduce programming model is implemented on our platform for simplified

processing of large Web datasets with a parallel, distributed algorithm on the Hadoop

cluster (Dean & Ghemawat, 2008). Using MapReduce, a processing task is decomposed

4 http://www.flickr.com/services/api
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into  map5 and  reduce sub-processes.  In  the  map procedure,  the  name-node  server

divides the input into smaller sub-problems by generating intermediate key/value pairs

and distributes them to data-nodes for solving sub-problems, while the reduce procedure

merges all intermediate values associated with the same key, and passes the answer back

to its master name node. 

In  crowd-sourced  gazetteers,  processing  text-based  place  descriptions  is  a

computation-intensive procedure. For example, in order to identify how people are most

likely to  describe the characteristics  of a  place (e.g.,  the city  of Paris),  we need to

calculate and rank the co-occurrence of tags that include the keyword of place name

(e.g. Paris) across multiple documents. The MapReduce model can help to speed up this

process. In the Algorithm 1, the Mapper function distributes the task of looping all the

documents for calculating the co-occurrence  frequency of words over multiple nodes

and then the Reducer function will combine the results from all distributed nodes when

they finish the parallel calculation. By using this algorithm, the most popular words to

describe a place can be identified very quickly.

   Algorithm 1: the MapReduce algorithm for co-occurrence word counting. 

5 Note that the term “map” denotes a particular kind of function in MapReduce programming model.
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      In addition, in order to enable spatial-analysis functions on Hadoop, the Hadoop

core is extended to handle geometric features and operations. We choose Esri’s open

source geometry library because of its popularity in GIS and as a reliable framework in

the whole ecosystem (more detailed information in Section 3.2).

(3) Cloudera Manager Web User Interface (CMWebUI):  Cloundera Manager6 is an

industry  standardized  administration  package  for  the  Hadoop  ecosystem.  With

CMWebUI, we can deploy and centrally operate the Hadoop infrastructures. In addition,

it gives us a cluster-wide, real-time view of nodes and monitors the running services,

and  enables  configuration  changes  across  the  cluster.  Fig.  1 shows  its  Web  user

interface.

6 download at http://www.cloudera.com
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Fig. 1. The Cloudera Manager Web user interface

(4) The GIS client supports the geo-visualization of MapReduce operation results

transmitted from the Hadoop cluster and built-in geoprocessing models. By enabling

HDFS  related  tools,  it  also  supports  converting  map  features  (points,  polylines,

polygons) into Hadoop-supported data formats for further spatial operations.  

3.2 Enabling spatial analysis on Hadoop

First,  since  HDFS cannot  directly  support  the  standard  GIS data  formats,  e.g.,  Esri

shapefiles, we need to store the geospatial data in a different way. GeoJSON7 is an open

format  for  encoding  simple  geometry  features  (points,  polylines,  polygons,  and

collections of these types) along with their non-spatial attributes. It is an extension of

the JavaScript-Object-Notation (JSON) format which is often used for serializing and

transmitting  structured  data  over  a  network  connection  and  meets  the  HDFS

requirements.  Both of the spatial and attribute information are stored in plain text as

below: 

GeoJSON file examples: 

{“type”: “Feature”,

7 http://www.geojson.org
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      “geometry”: {

        “type”: “LineString”,

        “coordinates”: [[-122.52, 37.71], [-103.23, 41.52], [-95.86, 43.13],…… },

      “fields”: {

        “prop1”: “value”,

        “prop2”: “string”}

}

Next,  we  incorporate  the  GIS  tools  for  Hadoop  that  have  been  released  on  the

open-source project site Github8, which provides an open-source toolkit for Big Spatial

Data Analytics powered by Esri and was released in March 2013. We integrate two

types of Esri toolkits on Hadoop to handle spatial data:  Geometry API for Java and

Geoprocessing Tools for Hadoop.  On the server side, the  Geometry API  is a generic

library that supports geometry types and basic spatial operations and will allow us to

build the MapReduce model for parallel processing of gazetteer entries (including such

operations as spatial filter and spatial join).  Table 1 lists the spatial relationship analysis

and operations that the existing toolkit supports. 

Table 1 The Esri Geometry API supported functions

Relationship Analysis equals, disjoint, touches, crosses, within, contains, overlaps
Spatial Operations buffer, clip, convexhull, intersect, union, difference

The MapReduce algorithm for spatial joins based on the Esri geometry library and

the  Hadoop system is  demonstrated  in  Algorithm 2.  This  algorithm is  important  to

analyze the spatial distribution of extracted gazetteer entries and to assign them to the

administrative  boundaries  of  places.  A  spatial  join  involves  matching  attribute

information  from  the  join  feature  to  the  target  feature  based  on  their  spatial

relationships.  The  spatial  join  usually  builds  on  sequentially  identifying  the  spatial

relationship between two input features. However, with the help of MapReduce model,

8 http://esri.github.io/gis-tools-for-hadoop
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this  operation can be deployed in the parallel  environment.  There are  two specified

functions for the implementation of MapReduce-based spatial join on HDFS:

The Mapper function splits  the target feature (e.g.,  a polygon representing a US

state)  into  different  keys,  i.e.  the  unique  identifier  (e.g.,  the  state  name).  Then,  it

performs the sub-process of determining whether the target feature contains the join

feature, and assigns a key/value (e.g., state name/ counts of points inside). Note not only

that the target feature has been split into different keys but also that the join features can

be divided into small blocks on HDFS for parallel computation to improve operational

efficiency. 

The Reducer function performs a summary operation (e.g., counting joined point

features to each polygon) by aggregating the key/values produced by the Mapper.
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Algorithm 2:  MapReduce algorithm of the spatial join operation.

3.3 A new geoprocessing workflow for Hadoop

The Hadoop ecosystem lacks a tool to visualize the geospatial footprints of gazetteer

entries. An intuitive way is to send the operation results back from the HDFS server to a

GIS client such as ArcMap. In addition,  the ArcMap software provides hundreds of

spatial analysis tools for discovering patterns hidden in the geospatial data. The recently

released toolkit  Geoprocessing Tools for Hadoop9 established the connection between

the ArcGIS environment and the Hadoop system. In our implementation, these tools are

used  for  further  analyzing  and  visualizing  the  gazetteer  entries  extracted  from  the

9 https://github.com/Esri/geoprocessing-tools-for-hadoop
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Hadoop system. More importantly, scalable geoprocessing workflows can be created by

linking the Hadoop related functions with GIS tools. For example,  Fig. 1 presents a

geoprocessing  workflow  running  on  ArcGIS  to  submit  a  MapReduce  job  for  the

spatial-join  operation  (points  in  polygons)  on  Hadoop.  The  main  procedures  are

described as follows:

(1) Features to JSON: Convert the target polygon features from standard ArcGIS format

(shapefile) into the GeoJSON format.
(2) Copy Data to HDFS: Transmit the polygon’s GeoJSON file based on the WebHDFS

mechanism,  which  uses  the  standard  Hyper-Text  Transfer  Protocol  (HTTP)  to

support  all  HDFS  user  operations  including  reading  files,  writing  data  to  files,

creating directories,  and so on. The user needs permission to access the Hadoop

Namenode host server and to operate the HDFS. 
(3) Execute Workflow: This tool needs an Oozie10 Web URL within the Hadoop cluster

and an input file that describes the Hadoop Oozie job properties, including the user

name,  the  job-tracker  information;  and  the  directories  of  input  features,  output

features, and the supported library of operations (i.e.,  the Esri Geometry API for

Java package in this case).
(4) Copy Results  from HDFS: It transmits the output of aggregating key/value pairs

(e.g.,  counts  of  points  in  each  polygon)  of  the  MapReduce  operation  from the

Hadoop server to the GIS client.
(5) Join Field: It integrates a GIS function “Join” to append the MapReduce processing

results  to  the  target  features  by  matching  the  key  field  (e.g.,  the  name of  each

polygon). As the output of this geoprocessing workflow the aggregated features will

be automatically added to display in the ArcGIS environment.

10 Oozie job workflow is a collection of actions (i.e. MapReduce jobs, Pig jobs) arranged on Hadoop system and 

allows one to combine multiple jobs into a logical unit of work.
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Fig. 1. The geoprocessing workflow running on ArcGIS to submit a MapReduce job of 
the spatial-join operation on Hadoop.

The  geoprocessing  workflow  of  spatial  join  for  Hadoop  facilitates  fast

processing  and  statistics  of  gazetteer  entries.  Enabled  by  this  new  distributed

geoprocessing framework, other computationally intensive spatial analysis tasks can be

substantially speeded up, after being decomposed into sub-processes according to the

MapReduce paradigm.

4. Experiments and Results

In this section we apply the methods introduced above to extract gazetteer entries from

the geotagged data in Flickr. First, we extract prominent feature-types using the scalable

geoprocessing workflow based on Hadoop. Then, we illustrate how to harvest different

geometric types of specified gazetteer entries.

4.1 Datasets and Hadoop cluster

A Web crawler was used to collect the geotagged data and store them on HDFS as one

type of volunteered gazetteer source. In total, we collected 5,319,623 records within the

bounding box of the contiguous US. The photos were either georeferenced by built-in

GPS in cameras or manually georeferenced by a user who identified the photo location

on the Flickr website. The location could either be the place where a photo was taken or

the location of an object in the photo. Automatic recording by a GPS receiver always
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results in the former case, while manually georeferenced photos could be either way.

The Photo metadata includes photo ID, title, description, tags, time when a photo was

taken and uploaded, latitude and longitude,  as well as lineage information about the

users who uploaded the picture (Table 1).

Based on the system architecture introduced above, on the server side, we built a

Hadoop cluster by installing, deploying, and configuring the Cloudera Hadoop packages

(CDH Version 4.0) on each distributed server and assigning different roles Namenode,

Datandoe,  HDFS services,  MapReduce services,  jobTracker and taskTraker to  them

(Table 1). The chief merits of such a Hadoop ecosystem derive from its robustness and

scalability at a low cost, by employing multiple normal computer servers instead of a

single high-performance cluster. In addition, the system architecture is so flexible that

the CDH packages can be deployed either on our local servers in different physical

locations or on Amazon EC2 instances as virtual servers. 

Table 1 The metadata structure and an example of Flickr geotagged data

PhotoID 5326171618
Title DSCN41
Description Santa Barbara Wharf
Tags California, CA, trip, sea, USA, pier, sunset, seafood
Taken Time 12/30/2010 10:39
Uploaded Time 1/4/2011 20:22
Latitude 34.4101
Longitude -119.6856
UserID 57900412

 

Table 1 The roles of 10 distributed servers connected on the Hadoop cluster

Name (count of servers) Roles Location Server Info
UCSBMasterNode (1) Namenode, HDFS, 

MapReduce, JobTraker

Santa 

Barbara

CentOS 5.8, 64 bit, 7.8 GB memory, 

3.6 GHz processor, 2 TB storage
ASUDataNode (1) Secondary Namenode, 

Datanode, HDFS, TaskTraker

Phoenix CentOS 6.4, 64 bit, 5 GB memory, 

2.4 GHz processor, 320 GB storage
EC2-RedHat (1) Datanode, HDFS, TaskTraker Oregon CentOS 6.4, 64bit, 7.5 GB memory, 

2.4 GHz processor, 420 GB storage
EC2-Ubuntu (7) Datanode, HDFS, TaskTraker Oregon Ubuntu 12.04, 64bit, 7.5 GB memory, 

2.4 GHz processor, 420 GB storage
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4.2 Extracting multi-scale spatial distributions of place types

While authoritative gazetteers provide good quality for long-term administrative place

types such as countries, cities, and towns, the crowd-sourced gazetteers could contribute

small-scale place types such as restaurants and coffee shops. In order to demonstrate the

performance of the new geoprocessing workflow for Hadoop introduced in Section 3.3,

we extract and analyze the spatial distribution of some prominent place types (Table 1)

in the US, including parks, schools, museums, coffee shops, streets, and rivers. Their

frequencies of occurrence are high enough in the tags for a reliable extraction.  

After loading the extracted text files of feature types on HDFS according to their

keywords (listed in Table 5), we can visualize the geographic footprints of place types

and obtain  statistical  information  by running the  geoprocessing  workflow of  spatial

joins for Hadoop. The spatial distributions of geotagged points annotated with these

feature types in the map extent of the continuous US are shown in  Fig. 1. It gives a

sense of spatial context for these place types and needs to zoom in the map for exploring

more detailed place information in a GIS environment. Named-entity recognition (NER)

techniques  can  be  used  to  further  extract  place  entities.  As  we  know,  places  are

hierarchically organized. Spatial joins can also help to assign the hierarchical names of

different geopolitical divisions (such as states, counties, and ZIP code regions) to each

gazetteer entry. Table 4 presents a summary of the operational results. 

By comparing the computation  time of  Hadoop-based spatial  join operations

with that of single desktop PC-based spatial join procedures running on a modern laptop

with 64-bit  operating system, 2.5 GHz Intel-dual-core processors,  and 4 GB instant

memory, as shown in Fig. 1 (A), we find that the MapReduce-based workflow running

on our Hadoop cluster can reduce computing time by an order of magnitude when the
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number of submitted geotagged points for each place types is sufficiently large (e.g., we

saved  about  73%  of  the  computing  time  for  100,000  points).  Interestingly  the

performance of 10 nodes compared with that of 4 nodes on the Hadoop cluster has a

comparatively  small  effect.  If  we  increase  the  number  of  target  polygons,  the

Hadoop-based aggregation reduces about half of the time and this is most likely because

of the difference in memory (RAM). A specific example of spatially aggregating the

229694 geotagged points of parks to different granularities of US census units -- states

(51  polygons),  counties  (3143  polygons),  ZIP  code  regions  (32086  polygons),  and

census tracts (72851 polygons) -- is shown in Fig. 1. The computation time curves are

depicted in Fig. 1. (B). Note that we only connected a relatively small numbers of (four

and ten) servers connected to the Hadoop cluster so far, and that higher computation

efficiency might  be achieved by adding more  data  nodes  equipped with HDFS and

task-Trackers.  However, Hadoop-based systems often encounter  a disk bottleneck in

reading  data  from the  network  (IO-bound)  or  in  processing  data  (CPU-bound).  An

optimized  configuration  of  the  Hadoop  cluster  could  improve  the  cloud  computing

performance but is not within the scope of this paper; see Kambatla et al. (2009) for

more details. Using this example, we demonstrated the high performance of the new

scalable geoprocessing workflow based on the MapReduce model and how to derive

feature-type-based gazetteer entries inside administrative polygons with GIS tools for

Hadoop.  

Table 1 Extracting and analyzing place types from photo tags at different scales

Feature Types Keywords Records # State #  County # ZIP
parks park, 公园(Chinese), 

parc (French), 

parquet (Spanish)

229694 4688 per state

49 states

145 per county

1580 counties

33 per ZIP

7042 ZIPs

schools school, university 112885 2304 per state

49 states

109 per county

1036 counties

32 per ZIP

3500 ZIPs
museums museum 65695 1341 per state 91 per county 39 per ZIP
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49 states 722 counties 1706 ZIPs
coffee shops coffee, cafe, 

coffeehouse, 

coffeebar, starbucks

19523 398 per state

49 states

25 per county

788 counties

7 per ZIP

2643 ZIPs

streets street, road, blvd, 

freeway, highway

181410 3702 per state

49 states

92 per county

1980 counties

6 per ZIP

31941 ZIPs
rivers river, watershed 45252 924 per state

49 states

37 per county

1217 counties

14 per ZIP

3371 ZIPs

(A)                                                                 (B)

(C)                                                                 (D)

(E)                                                                  (F)

24



Fig. 1. The spatial distributions of geotagged points annotated with these feature types: 

(A) parks; (B) schools; (C) museums; (D) coffee shops; (E) streets; (F) rivers.

 (A)                                                                (B)

(C)                                                                (D)

Fig.  1. The results of spatial join workflow based on Hadoop for  parks:  (A) by US
states; (B) by US counties; (C) by US ZIP codes; (D) by US census tracts. (Source:
basemaps are provided by Esri)
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(A)                                                                            (B)

Fig. 1. The computation time curves of Hadoop-based spatial joins and a single desktop
PC: (A) increasing the number of joined points; (B) increasing the number of target
polygons.

4.3 Harvesting gazetteer entries

The results of place-type-based processing give an overview of the spatial distributions

of geotagged points. In order to extract full gazetteer entries, place names, geographic

footprints, and feature type descriptions, as well as provenance information are needed.

As discussed in Section 2.1, place is a social concept that is perceived and recognized

by human beings; therefore, the provenance information about the group of people who

identify  place  is  as  important  as  the  traditional  elements  (name,  feature  type,  and

footprint). As argued by Goodchild and Li (2012a), the current representation of place

entries  in  a  gazetteer  independent  of  the  users  should be complemented  by another

element  of  source.  It  helps  reveal  the  binary relationship  between  a  place  and  its

contributors, i.e., to know not only where a place is and how it is referred-to, but also

who refers to it in this way. The provenance of gazetteer entries would enhance research

on social perception of places because the same (or similar) location may be named
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differently by different groups of people instead of the traditional unary form that only

links the place and its official name. 

In the following, we illustrate the construction processes for retrieving different

geometric  (point,  polyline,  polygon)  gazetteer  entries  annotated  with  Santa  Barbara

Courthouse,  California  State  Route  1  (SR1 or  Highway1),  and  Harvard  University.

Table 1 presents the summary of harvested crowd-sourced gazetteer entries with the

given keywords. The geographic footprints and place descriptions were extracted from

the GPS locations and the tags that were given to a place. The provenance information

was derived from the users who contributed the geotagged photos to a given place. The

collected  provenance  information  from users  will  help  to  further  validate  extracted

entries based on quality assurance methods as well  as trust  model (more details are

provided in Section 4.4). 

Table  1 The  harvested  different  geometry  types  (point,  polyline,  polygon)  of
crowd-sourced gazetteer entries

Place names Geographic footprints Place descriptions

(top 10 ranked tags)

Provenances

(only list the number

of contributors here)
Santa Barbara 

Courthouse

{Point:[GeoJSON]} Santa Barbara courthouse 

California county palm trees 

view historical architecture

81 points from 22 

trusted UserIDs

California 

State Route 1

{Line: [GeoJSON]} highway1 California 

Sanfrancisco bigsur 

motorcycleride hearstcastle 

beach ocean coast USA

427 points 59 trusted

UserIDs

Harvard 

University

{Polygon:[GeoJSON] } Harvard University 

Cambridge USA Boston 

Massachusetts Square 

Harvard-Westlake Flintridge 

Sacred

637 points from 176 

trusted UserIDs
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Santa  Barbara  Courthouse,  located  at  downtown  Santa  Barbara,  is  a  local  historic

landmark and famous for its architecture and the panoramic view of the city. It is better

to  take  it  as  a  point  gazetteer  entry  although  multiple  geotagged-photo  points  are

extracted and most of them distributed around the main building (Fig. 1). We applied

the  Standard Deviational Ellipse (SDE) statistical  analysis to identify the significant

points, which is more robust to outliers and could summarize the central tendency and

directional trend of point distributions (Mitchell, 2005). Next, we selected the points

(SPs)  contained  by  the  two  standard  deviation  (2σ-SDE)  polygon  which  covers

approximately 95 percent of the extracted points. Finally, a 2σ-centroid of SPs in the

identified cluster was assigned to the geographic footprint for this feature. In addition,

by  counting  the  frequency  of  tags,  we  perceive  that  location-context  words  (Santa

Barbara,  California,  county),  local  distinguishing  features  (palm  trees)  and  the

characteristics  of  the  landmark  itself  (view,  historical,  architecture)  are  the  most

frequently used texts to express the users’ feelings and experiences about a place. 
   

(A)                                                                                       (B)

Fig.  1. The geographic footprint and tag descriptions for  Santa Barbara Courthouse:
(A)  extracted  geotagged  points  for  this  feature  and  its  1σ-centroid  (Blue)  and
2σ-centroid  (Green)  with  the  standard  deviational  ellipses;  (B)  a  word-cloud
visualization of the extracted tags using the Wordle11 tool.

11 http://www.wordle.net
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California SR1 is one of the most famous highways along the Pacific Coast in

the  US.  By  merging  the  geotagged  points  labelled  ‘highway1’  or  ‘freeway1’  and

filtering them by the geographic footprint of California, the automatically generated line

presents a good shape of the main SR1 (Fig. 1). A denser spatial and temporal sampling

of geotagged points and more strict algorithms may provide a better and more complete

footprint of the route. More importantly, by exploring the semantic tags, we can derive

fruitful  feature  attributes  and social  descriptions  for  fast  updating  of  road gazetteer

entries.  For  SR1,  we  get  the  information  about  where  the  entry  is  located  (USA,

California), the main cities (San Francisco, Los Angeles) and famous landmarks (Big

Sur,  Hearst  Castle)  along  the  route,  as  well  as  other  descriptive  characteristics

(motorcycle ride, beach, ocean, coast). This process is unlike traditional automatic road

updating techniques with GPS trajectories (Cao & Krumm, 2009) which only contain

the geometry information. 
  

(A)                                                              (B)

 (C)
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Fig.  1. The  geographic  footprint  and  tag  descriptions  for  California  SR1:  (A)  the
automatically constructed line feature by connecting all points following the longitude
sequence; (B) the California SR1 map from Wikipedia; (C) a word-cloud visualization
of the extracted tags using the Wordle tool.

The final example is Harvard University.  In crowd-sourced gazetteers, in order

to store the more complete extent of the university campus, it should be represented as a

polygon. As shown in Fig. 9 (A), the extracted geotagged points labeled with ‘Harvard

University’ are  distributed among the central  campus,  on Harvard Bridge and along

other scattered locations. Several methods have been proposed to generate the polygonal

representation of places from footprint points. For example, kernel-density estimation

has  been introduced (e.g.,  Jones et  al.,  2008;  Li  & Goodchild,  2012)  to  extract  the

boundaries of vague places according to a threshold point density. Keßler et al. (2009)

assigned centroid locations to geotags and used Delaunay triangulation graph to identify

clusters in the point clouds. Liu et al. (2010) proposed a point-set-based-region model to

approximate vague area objects.

Here, we introduce a fuzzy-set-based method to extract geographic footprints of

polygonal places. Fuzzy-set-based classification and identification methods have been

widely used in GIS and related disciplines (Burrough & Frank, 1996; Cross & Firat,

2000; Robinson, 2003; Montello et al., 2003). The fuzzy set A can be interpreted as the

degree of membership of X in a set; values assigned fall within the range [0, 1].  Many

membership functions to express the grade of membership of  X in a fuzzy set  A have

been  discussed  by  Robinson  (2003).  For  the  crowd-sourced  gazetteer  entries,  the

geotags of a place generated by users usually follow a clustering structure,  thus we

suggest using a distance-decay function (Taylor, 1971; Leung & Yan, 1997) to measure

the membership of candidate point locations assigned to a place:
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where dx is the distance between a candidate point and the centroid point of the cluster,

β is a decay parameter, and C is a parameter to scale the range of membership scores.

We need to set distance thresholds d1 and d2. 

To store the spatial footprint of a polygonal gazetteer entry, we can use the α-cut

technique  (Robinson,  2003).  A  crisp  set  Aα contains  all  elements  of  X whose

membership scores in Aα are greater than or equal to α. The α-cut-boundary of a place

can  be  further  derived  from  the  points  in  Aα based  on  the

minimum-enclosing-geometries, such as the α-cut-minimum-bounding-rectangle, or the

α-cut-convex hull. Here, we set β=1, d1=50 meters, d2=5000 meters, and C=5 (note that

the parameters might vary at different scales). Fig. 9 (B) and (C) present two different

shapes  of  α-cut-boundaries:  the  α-cut-minimum-bounding-rectangle  and  the

α-cut-convex-hull.  All  the  0.5-cut-boundaries  have  a  good  representation  of  the

footprint of the northern Harvard campus (not including the southern part separated by

the Charles River), while the 0.8-cut-boundaries indicate the core attractive areas where

the geotagged photos are taken. 

After  updating  the  geographic  footprint,  we  also  need  to  capture  the  users’

descriptions about Harvard University.  Besides conventional place descriptions that are

related  to  place  names  and  local  landmark  characteristics  introduced  above,  the

comments with tags related to events can also be detected. For example,  during the

temporal extent of downloaded data, there was a girls’ basketball match between the

Flintridge-Sacred-Heart  team and  the  Harvard-Westlake  team hosted  at  Harvard  on

January 21, 2011. Consequently, Flickr users uploaded many geotagged photos with
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comments and place descriptions about this particular match. This is why we get a high

frequency of tags: Flintridge-Sacred-Heart and Harvard-Westlake at Harvard.

(A)
 

(B)       (C)
 

(D)

Fig. 1. The geographic footprints for Harvard University: (A) the spatial distribution of
geotagged points with their fuzzy membership scores; the 0.5 and 0.8-cut-boundaries
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represented  by  (B)  the minimum  bounding  rectangle;  (C) the  convex  hull;  (D)  A
word-cloud visualization of the extracted tags using Wordle tool. (Note that different
projections  between basemap and minimum bounding geometries  make their  shapes
become deformed.)

4.4 Outlook on the provenance-based trust evaluation 

VGI as a data source preserves the semantic diversity in the contributors’ cognition of

places.  The data  are  created through a  large  volume of  voluntary contributions  and

quality issue has been widely discussed by the VGI research community. Goodchild and

Li  (2012b),  for  instance,  discussed  three  approaches  for  the  quality  assurance:

crowd-sourcing,  social, and  geographic  methods. In the absence of ground-truth data,

several studies have proposed the use of provenance information to estimate the quality

of  VGI.  For  example,  researchers  suggested  using  contributor-associated  trust  to

measure  crowd-sourced  data  quality. Mooney  and  Corcoran  (2012)  investigated  the

tagging and annotation of OSM features using provenance. Keßler and Groot (2013)

proposed a five-indicator trustworthiness model as a proxy in the case study of OSM.

The results of an empirical study support the hypothesis that VGI data quality can be

assessed by using a trust model based on the provenance information.

In  this  work,  we have  collected  the  provenance  metadata  for  each  gazetteer

entry, i.e.,  the contributors, the total  number of uploaded photos and time-stamps of

contributions.  Like other crowdsourcing platforms, a small number of “active users”

share most contributions which follow a power-law distribution ranked by the number

of uploaded photos (see Fig. 1); only 8% of the total 440000 contributors have shared

more than 10 geotagged photos in the collected datasets.
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Fig. 1. The power-law distribution of generated photos by top-ranked users (on log-log
plot)

In  contrast  to  OSM  or  Wikipedia,  the  contributors’  reputation  and

trustworthiness  cannot  be  assessed  by revisions;  in  Flickr, we can  only  rely  on  the

contributors’ past geotagging and photo sharing behaviors to establish a user-reputation

model: a user i have reputation value Ri(t) at time t. 

ranki WtR *
)(N uploaded hasuser  a which photos ofamount   totalthe

)(N photos geotagged reliable ofnumber  the
)(

i

ir=

A reliable geotagged photo means that its position accuracy meets the quality

criteria and consists with the geographic knowledge (Goodchild & Li, 2012b). Wrank is a

weighted rank based on total contribution; the active users who contribute more photos

have higher value of Wrank. We trust the content generated by high reputation users for

crowd-sourced gazetteer construction and enrichment. In addition,  for each gazetteer

entry, we set up a bottom-line requirement: with minimum number (15) of contributors

and a minimum number (10) of tag descriptions according to the observation of overall

characteristics in the sample datasets (Table 5). Further filtering work and recalculation

will be processed based on the contributors reputation scores.  We presented an intuitive

way to filter reliable geotagged content. Alternative, more complex trust models based

on the provenance metadata will be addressed in our future work.
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5. Conclusions and Future work

In summary, space and place are  associated through gazetteers in a wide variety of

geospatial applications. While traditional gazetteers that are constructed and maintained

by  official  authorities  lack  informal  and  vernacular  places,  we  demonstrate  a  Big

Data-driven  approach  by  mining  VGI  sources  to  create  a  crowd-sourced  gazetteer.

Three examples of different types (point, polyline, polygon) of geographic features are

extracted,  analyzed  and  visualized  in  this  study. We also  present  an  intuitive  user

reputation model for the trust evaluation. 

This semi-automatic construction of a crowd-sourced gazetteer can be facilitated

by  using  high-performance  computing  resources  because  it  involves  the  process  of

mining large-volumes of geospatial data. We designed and established a Hadoop-based

processing  platform  (GPHadoop)  to  show  the  promise  of  using  VGI  and  cloud

computing in gazetteer research and GIScience in general.  In particular, our approach

has the following merits:

• Using the examples of the spatial join operation to the increasing number of points

in  different  geographic  scales,  we  demonstrate  that  the  MapReduce-based

algorithm has a higher efficiency to process such Big Geo-Data analysis compared

to a traditional desktop PC-based analysis.  

• The MapReduce algorithm of counting co-occurrence words makes it possible to

rapidly extract parts of a place semantics and popular tags to characterize a place.

• The  platform  enables  scalable  geoproccessing  workflows  to  solve  geospatial

problems  based  on  the  Hadoop  ecosystem  and  Esri  GIS  tools,  which  make

contributions in connecting GIS to a cloud computing environment for the next

frontier of Big Geo-Data Analytics.
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There  are  four  major  areas  that  require  further  work:  (1)  the  conflation  and

integration  of  crowd-sourced  gazetteers  that  include  more  place  entries  and  fruitful

descriptions extracted from various sources, (2) the exploration of other spatial analysis

functions that can be executed on Hadoop, (3) gazetteer schema (ontologies) that go

beyond  names,  footprints,  and  types,  and  (4)  research  about  efficiency  and  quality

assurance  issues.  In  this  research,  only  two  MapReduce  algorithms  and  10

connected-server-nodes were implemented on the Hadoop cluster for processing Flickr

geotagged data; further research is required to explore which types of operations are

appropriate to such parallel computing systems for Big Geo-Data analysis and what the

performance of  Hadoop cluster  is  if  increasing  to  hundreds  of  nodes,  as  well  as  to

incorporate more heterogeneous volunteered data sources for constructing more holistic

perspectives on places. 
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