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Abstract With their increasing availability and quantity, remote sensing images
have become an invaluable data source for geographic research and beyond. The
detection and analysis of spatial patterns from such images and other kinds of
geographic fields, constitute a core aspect of Geographic Information Science.
Per-cell analyses, where one cell’s characteristics are considered (geo-atom), and
interaction-based analysis, where pairwise spatial relationships are considered (geo-
dipole), have been widely applied to discover patterns. However, both can only char-
acterize simple spatial patterns, such as global (overall) statistics, e.g., attribute aver-
age, variance, or pairwise auto-correlation. Such statistics alone cannot capture the
full complexity of urban or natural structures embedded in geographic fields. For
example, empirical (sample) correlation functions established from visually differ-
ent patterns may have similar shapes, sills, and ranges. Higher-order analyses are
therefore required to address this shortcoming. This work investigates the necessity
and feasibility of extending the geo-dipole to a new construct, the geo-multipole,
in which attribute values at multiple (more than two) locations are simultaneously
considered for uncovering spatial patterns that cannot be extracted otherwise. We
present experiments to illustrate the advantage of the geo-multipole over the geo-
dipole in terms of quantifying spatial patterns in geographic fields. In addition, we
highlight cases where two-point measures of spatial association alone are not suf-
ficient to describe complex spatial patterns; for such cases, the geo-multipole and
multiple-point (geo)statistics provide a richer analytical framework.
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1 Introduction and Motivation

The geo-atom, defined as 〈x,Z,z(x)〉, plays an important role in Geographic Infor-
mation Science as the core representation of spatial information (Goodchild et al.,
1999, 2007). The geo-atom associates a spatial location x with an attribute feature Z
via the functional mapping z(x). In terms of analysis, the geo-atom is applied in the
computation of classical statistics used to describe aspects of spatial pattern in geo-
graphic fields. Examples of such statistics include the mean, variance, proportion of
specific attribute values, and so on. Cell-based analysis of remotely sensed images
with multiple attributes being available at each cell, form another common exam-
ple of the usage of the geo-atom. Per-cell classification of low spatial resolution
multispectral images is an example of such analytical operation. Finally, the geo-
atom representation also applies to the object-driven perspective of spatial analysis,
whereby each atom refers to an object rather than a cell.

The geo-atom considers each location x independently from other locations. This
independence, however, ignores any interaction between locations, a critical aspect
of geographic pattern (Goodchild et al., 2007). To address this shortcoming, Good-
child et al. (2007) introduced the concept of a geo-dipole, 〈x,x′,Z,z(x,x′)〉, whereby
the interaction of variables between two locations x and x′ is described via the two-
point function z(x,x′). Such interaction function often involves measures of similar-
ity of attribute values at location pairs, along with their geographical (or other) dis-
tance. Statistics relying on the geo-dipole for exploring spatial patterns include the
distance to nearest neighbor, Ripley’s K, Moran’s I, the correlogram, the semivari-
ogram, and so forth. The same can be argued for interpolation, e.g., the interpolation
of a temperature surface based on data obtained at monitoring stations, as well as
for geographic contextual classification (Atkinson and Lewis, 2000; Lu and Weng,
2007; Congalton, 1991), e.g., the improved classification of land use categories ac-
counting for image texture information. Two-point statistics, such as the variogram
that quantifies spatial auto-correlation, have been used several decades before the
term geo-dipole was introduced; it was Goodchild et al. (2007), however, that first
brought this notion into a more conceptual and theoretical level, which is the main
focus of our work as well.

The geo-dipole considers a particular type of spatial interaction; namely, pairwise
interactions. Those pairwise or two-point interactions are often (linearly) combined
to arrive at interactions characterizing multiple locations, as, is done, for example,
in spatial interpolation. In Kriging interpolation, in particular, the semivariogram
model is first used to link each sample data location with a single interpolation loca-
tion, and then such elementary two-point relations are combined through the Kriging
system to arrive at interpolation weights. The entire procedure is based on explicit
prior probabilistic models, such as the classic multivariate Gaussian model which is
fully determined by its first-order statistics – the mean component – and its second-
order statistics – the pairwise covariance function (Remy et al., 2009). However,
these two-point models can only capture relatively simple spatial interactions, such
as regularity, randomness, or clustering in attribute values. The identification and
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analysis of more complex spatial interactions, like those associated with curvilinear
or other types of geometric structures, call for higher-order or multi-point statistics.

In this work, we propose the geo-multipole as a new conceptual model in which
the interactions among multiple locations are simultaneously quantified. To model
this kind of multiple-point interactions, we employ higher-order statistics, namely
multiple-point (geo)statsitics together with their estimating approaches. In order to
illustrate the necessity and feasibility of the geo-multipole, we compare it against
the geo-dipole and classical two-point statistics for the recognition of urban spatial
patterns. Although the geo-multipole concept could be employed to both object- and
field-based representations of geographic information, this work focuses on methods
and applications to geographic fields only.

The remainder of this paper is structured as follows: Section 2 briefly summarizes
related work on analyzing and predicting geographic field patterns. In Section 3,
the geo-atom and geo-dipole are approached from a probabilistic perspective in the
context of geographic field analysis and then generalized to arrive at the notion of
a geo-multipole. To motivate the need for the geo-multipole, Section 4 presents five
contrasting spatial patterns extracted from remotely sensed images and compares
them using two-point statistics and multiple-point statistics under the geo-dipole
and the geo-multiple frameworks, respectively. Finally, Section 5 summarizes our
results and highlights future research directions.

2 Related Work

In this section we review related work on geographic information representation
and analysis required for the understanding of the proposed geo-multipole, as well
as background material on multi-point (geo)statistics.

2.1 Geographic Conceptualization

The conceptualization of geographic information has been discussed in GIScience
since its emergence (Goodchild, 1992b,a; Couclelis, 2010). The core challenge is
how to model (and distinguish) field-based and object-based views on geographic
occurrences. Corresponding work includes the geographic field (G-Field) and ob-
ject (G-Object), field object, object field, general field, and so on (Goodchild et al.,
2007; Liu et al., 2008; Cova and Goodchild, 2002; Voudouris, 2010). To unify the
multitude of concepts, Goodchild et al. (1999) introduced the geo-atom by which
the former concepts can be generalized. In a later work, Goodchild et al. (2007)
argued that these concepts are designed for describing the static distribution of fea-
tures and attributes on the Earth surface, whereas dynamic processes of geographic
phenomena require different conceptual models, i.e. interaction models. Goodchild
et al. (2007) went further to propose the geo-dipole, in which the interaction between
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two locations is modeled. The authors demonstrated that the geo-dipole is capable
of representing many analytical interaction models, such as object fields, metamaps,
object pairs, and association classes. One common characteristic of these analytical
models, however, is the property of pairwise interactions, which is also the concep-
tual foundation of the geo-dipole. For more complex, but nonetheless very frequent
spatial patterns, e.g., those emerging in urban environments, the geo-dipole might
not suffice to adequately model the complexity of spatial interactions, as more than
two locations may be involved simultaneously in defining a pattern. For example,
it makes sense to study a central market place located in a dense residential area
with many individual private units, but it would be very limiting to observe only
one pair, i.e, a private unit and the market center. Considering the interaction be-
tween many private units and the market center simultaneously is different from
considering pairwise interactions between each private unit and the market center,
e.g., when the task is to uncover a star-shaped pattern formed by the market and the
incoming streets with their residential units. To the best of our knowledge, multiple-
point interaction has been seldom formalized in conceptual models in GIScience, an
exception being the concept of Markov (random) fields where spatial interaction is
defined using higher-order cliques encompassing groups (triplets, quadruplets, and
so forth) of pixels. In terms of applications, however, such higher-order interactions
are rarely quantified, and inference in such fields amounts to considering pair-wise
(two-point clique) interactions only.

2.2 Geographic Field Analysis

As discussed in Section. 2.1, the field is one core concept of geographic infor-
mation science (Kuhn and Frank, 1991; Kuhn, 2012). The detection and analysis
of patterns from geographic fields, constitutes a critical task not only in geogra-
phy, but also in related sciences, such as geology, environmental sciences, ecol-
ogy, oceanography, and so on. Whether spatial context is explicitly considered or
not distinguishes analytical approaches into non-contextual analyses and contextual
analyses. Non-contextual analysis only focuses on individual cells and no interac-
tions with neighbors are taken into account (Settle and Briggs, 1987; Rollet et al.,
1998; Fisher, 1997). This type of approach is commonly used in the classification of
hyper-spectral remote sensing images or the spatial prediction of many other mul-
tivariate geographic fields (Lu and Weng, 2007). In contrast, contextual analysis
introduces spatial patterns into the process of prediction and is frequently applied to
high spatial resolution geographic fields (Li et al., 2014), including remotely sensed
images. Depending on the way of incorporating spatial information, the analysis of
fields can be categorized into distance-based and object-based approaches (Li et al.,
2014).
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Distance-based Analysis

In this approach, spatial patterns are described by pairwise dissimilarities between
attribute values measured at locations separated by specific distance lags (Cressie,
1993); examples include the variogram, the correlogram or transition probability di-
agrams. Such distance-based or two-point statistics are widely employed for incor-
porating spatial auto-correlation into interpolation and classification of field infor-
mation (Atkinson and Lewis, 2000; Remy et al., 2009). For classification purposes,
in particular, distance-based spatial interaction pertaining to multiple attributes (re-
flectance values recorded in different spectral bands at each cell or pixel) has been
used as a model of field (image) texture, and incorporated into the classification
procedure via: (1) local (within a neighborhood template) sample or modeled vari-
ograms used as additional entries of the feature vector at each cell (Carr, 1996; Carr
and De Miranda, 1998; Ramstein and Raffy, 1989); and (2) multivariate variograms
altering the weights originally attributed to entries of the feature vector, had classifi-
cation been performed without accounting for spatial information (Oliver and Web-
ster, 1989; Bourgault et al., 1992). Variogram-based analysis of geographic fields,
however, constitutes a two-point representation of spatial interactions, and typically
invokes the rather limiting assumption of second-order stationarity (Remy et al.,
2009).

Object-based Analysis

In object-based image analysis (OBIA) the field is first segmented into homoge-
neous areas, regarded as objects, and then the predictions about the cells contained
within these objects are assumed to be the same (Blaschke, 2010; Blaschke et al.,
2014; Li et al., 2014). In OBIA, spatial information is considered in the process of
segmentation, e.g., for Markovian methods (Jackson and Landgrebe, 2002) and wa-
tershed methods (Salembier et al., 1998). Object-based analysis is commonly used
in the classification and simulation of remotely sensed images and related work
demonstrated the improvement over cell-based analysis (Blaschke, 2010; Ceccarelli
et al., 2013). However, OBIA is limited in terms of the assumption of homogeneous
objects, the sensibility to segmentation algorithms, as well as the difficulty of us-
ing a large amount of conditioning data when it comes to generating patterns in a
simulation setting (Remy et al., 2009).

2.3 Multiple-point (Geo)statistics

Multiple-point (geo)statistics (MPS) were initially proposed to overcome the limi-
tations inherent in variogram-based and object-based analysis for the identification
of complex spatial patterns in the subsurface (Guardiano and Srivastava, 1993). The
core idea behind MPS is that, since variogram models are commonly estimated from
data pertaining to analog deposits or outcrops or even expert-drawn images due to
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data limitations regarding the subsurface, why not directly borrow entire (concep-
tual) images as depositories of spatial patterns (Remy et al., 2009). It is these images
that domain experts use to visually detect spatial patterns from and, thereby, estimate
variogram model parameters. In addition, variograms being two-point statistics can-
not capture spatial patterns resulting from complex earth processes. Implementing
this idea, MPS abandons any explicit statistical model, but regards the training im-
age as one realization of non-analytically defined random field pertaining to the
actual (target) region being studied. The key assumption under MPS is that the train-
ing image contain adequate (in terms of complexity and number) replicates over the
patterns deemed to occur at the target region (Strbelle, 2002; Journel and Zhang,
2006). Multiple-point statistics, e.g., the probability of three or more grid cells hav-
ing simultaneously a particular lithological class, are then directly learned from the
training image.

So far, most applications of multiple-point (geo)statistics are limited to the do-
main of geology, in which subsurface heterogeneities, such as those found in porous
media and reservoirs, are modeled and simulated (Strebelle et al., 2001). Several
MPS algorithms have been implemented for applications in geology. Examples in-
clude simple normal equation sampling (Strébelle and Journel, 2000), filter-based
simulation (Zhang et al., 2006), and direct sampling (Mariethoz et al., 2010).

In recent years, two threads of applications of multiple-point (geo)statistics can
be distinguished for classifying geographic features, such as roads, buildings, veg-
etation, and open water-bodies, using remotely sensed images. Tang et al. (2016)
incorporated MPS as new weights into K-nearest neighbor (KNN) classification and
illustrated the improved performance compared to other supervised learning models
such as Bayesian classifiers and Support Vector Machines. Others (Ge et al., 2008;
Ge and Bai, 2010, 2011; Ge, 2013) introduced the Classification by Combining
Spectral Information with Spatial Information in Multiple-point Simulation (CC-
SSM), in which MPS-based spatial classification is combined with pixel-based spec-
tral classification using fusion techniques, such as consensus-based and probability-
based fusion. The performance of the CCSSM approach compared favorably to tra-
ditional classification approaches, such as Maximum Likelihood Classification.

While these studies aim at improving the classification performance for remotely
sensed images by applying MPS, our work focuses on investigating the necessity
and value of applying multiple-point interactions in analyzing geographic informa-
tion, particularly geographic fields. We do so by generalizing the geo-dipole to stay
within the conceptual framework proposed by Goodchild and others. Using our ap-
proach, multiple-point (geo)statistics are not limited to classifications problems, but
can also be used for interpolation, simulation, and so forth. Going beyond the recent
practice of using MPS in remote sensing, multiple-point (geo)statistics could also
be extended to other types of fields such as model outputs and irregular tessella-
tions. Lastly, by introducing the geo-multipole, we hope to foster the development
of GIScience-specific MPS algorithms that suit the needs and application areas of
our community, e.g., for studying urban environments.



Generalizing the Geo-dipole for Quantifying Spatial Patterns 7

3 Introducing the Geo-multipole

In this section we introduce the geo-multipole as a conceptual generalization of the
geo-dipole and also provide a probabilistic perspective on the geo-atom.

3.1 Conceptual Models

Capitalizing on the previously established conceptual models of the geo-atom
〈x,Z,z(x)〉 and the geo-dipole 〈x,x′,Z,z(x,x′)〉, we define the geo-multipole as fol-
lows:

Geo-multipole: 〈x, tN ,Z,z(x, tN)〉
where tN = x1, ..,xN are the N neighbors of x.

Here, we categorize conceptual models into three groups: (1) single-point data
models, namely the geo-atom where no interactions between locations are con-
sidered; (2) two-point data models, namely the geo-dipole where pairwise inter-
actions are considered; and (3) multiple-point data models, namely the proposed
geo-multipole, which can be regarded as a generalized conceptualization of spa-
tial interactions as defined by the geo-dipole. With respect to the geo-multipole, a
neighborhood tN , with N locations, is defined for each target location x. Then the
interaction between x and its neighborhood tN in terms of variable Z is defined as
z(x, tN). The key difference between the geo-dipole and the geo-multipole is the
fact that locations x1, ..,xN in tN are simultaneously considered (along with the cor-
responding attribute values) when modeling their interactions with x. In contrast,
interactions are considered in pairs under the conceptualization of the geo-dipole
despite that multiple pairwise interactions could be combined in sequence. It is im-
portant to note that simultaneously modeling interactions between the target and all
its neighbors is mathematically different from simply combining pairwise interac-
tions between each neighbor and that target. Namely, z(x, tn = {x1, ...,xN}) does not
imply f (z(x,x1), ...,z(x,xN)).

3.2 Probabilistic Perspective

Geographic fields are frequently assumed to be generated from stochastic processes,
and are thus regarded as realizations of a random field. Along the same lines,
this work approaches the three conceptual models from a probabilistic perspective.
Therefore, we discuss their descriptive statistics, as well as relevant estimation ap-
proaches in what follows.
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3.2.1 Geo-atom

To summarize geographic fields in terms of the geo-atom, single-point statistics
could be employed. The mean and standard deviation are the most commonly used
examples. They are capable of describing the average magnitude, as well as the
spread, of values of the attribute of interest across the domain. Other common statis-
tics include quantiles, the number of cells whose attribute values satisfy a particular
query, and the probability density function (PDF) of the attribute values:

f (z,x) = prob(Z(x) = z± ε)

where ε denotes an infinitesimally small value. It should be noted that, in this work,
we use the term PDF also for the case of a categorical attribute Z, instead of the
more correct notion of a probability mass function (PMF) for the sake of simplicity.
For the same reason, we drop the ±ε notation from the PDF in what follows.

Optimal prediction at each location x, requires knowledge of the PDF f (z,x).
In the univariate case, the estimation of f (z,x) only depends on the location x it-
self and no other variables at this location are provided. In addition, there is no
interaction between the attribute value at this location and other locations. There-
fore, unless the probability density function f (z,x) is estimated by domain experts
using physical models or experience considering a limited number of sample data
z(xs;s = 1, . . . ,S), it is challenging, if not impossible, to estimate the function from
a probabilistic perspective.

In the multivariate case where the target variable Z is co-located with other vari-
ables Z′, the relation between Z(x) and Z′(x) could be modeled through sample
data; hence, the multivariate version of f (z,x), i.e. f (z,z′,x) = prob(Z(x) = z|Z′(x)),
could be estimated. This second case is common in GIScience. For example, if Ztemp

is a unknown temperature field and we observe elevation Zelev and solar radiation
Zsolar as known fields, by using the sample data {Ztemp(xs),Zelev(xs),Zsolar(xs);s =
1, ....S}, the relation between Ztemp and {Zelev,Zsolar} can be modeled through ei-
ther linear or non-linear models. Then, the conditional PDF of the random variable
Ztemp can be estimated by substituting Zelev and Zsolar in the trained model. In re-
mote sensing applications, per-cell classification is another example of this case,
whereby reflectance values at different spectral bands form multiple feature vari-
ables and the class code at each cell forms the target categorical field.

3.2.2 Geo-dipole

Since the interaction between two points is now considered, concepts such as dis-
tance and neighborhood are key components of the geo-dipole. Statistics that could
be used for describing spatial patterns via geo-dipoles are spatial autocorrelation
measures, such as Moran’s I and Geary’s C, or their multiple lag-distance analogs,
the correlogram and the semivariogram, for continuous data, and transition proba-
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bilities for categorical data. In addition, the conditional PDF in this case is modeled
as:

f (z,x,Z(x′)) = prob(Z(x) = z|Z(x′))

To predict f (z,x,Z(x′)) within the geo-dipole framework, the key is to model the
interaction Z(x,x′). Geostatistics provides approaches to model such interaction or
association based on distance. For instance, under first- and second-ordered station-
arity, Z(x,x′) could be characterized through semivariogram models whose param-
eters are estimated by sample data. Note here, that interaction among data of two
different attributes can be also defined via cross-semivariogram models (Goovaerts,
1997). Given the interaction model Z(x,x′), the conditional PDF of the random
variable Z(x) could be estimated through an observed variable as in the univari-
ate case, or multiple observed variables as in the multivariate case. One example
for the univariate case is interpolation, whereby a, say, temperature field can be
interpolated using limited sample data. Interpolation methods, such as inverse dis-
tance weighting and Kriging, account for pairwise interactions between Ztemp(x)
and Ztemp(xs;s = 1, . . . ,S). Land use classification using multi-spectral remote sens-
ing images is an example of the multivariate case. In contrast to incorporating data
pertaining to only one spectral band, multiple bands, together with their modeled
cross-interactions, are used to arrive at land use classifications.

3.2.3 Geo-multipole

In contrast to the geo-dipole, the geo-multipole takes the N neighbors of x into
account simultaneously. Rather than two-point statistics, higher-order statistics are
thus required to model such a multiple-point interaction Z(x, tN). Similar to the geo-
dipole, such multiple-point statistics could be obtained through sample data. How-
ever, the size of sample data sets is typically relatively small for such a multiple-
point inference endeavor; this might result into biased estimates. A more promising
approach is to use training images, which are assumed to contain spatial patterns
deemed representative of the actual field under study. Multiple point interactions
Z(x, tN) are then directly learned from the training image without building any para-
metric model. Specific algorithms to accomplish this are discussed in Section 3.3.
The conditional PDF of the random variable Z(x) at a target location x can then
be built, from which an optimal prediction can be derived for the attribute Z at that
location:

f (z,x,Z(tN)) = prob(Z(x) = z|Z(tN))

The geo-multipole is appropriate for analyzing geographic fields that have rather
complex spatial patterns. Examples include categorical fields that pertain to urban
structures, such as roads that exhibit curvilinearity patterns or rooftops that have
polygonal shapes. The geo-multipole could also be used for spatial interpolation,
e.g., for air pollution patterns, and spatial simulation, e.g., of urban growth. Concrete
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examples of utilizing the geo-multipole, together with a comparison to the geo-
dipole are given in Section 4.2.

3.3 Higher-order Statistics

The geo-multipole concept employs higher-order statistics with respect to the geo-
multipole, whereby two-point statistics are considered. Therefore, the question of
how to efficiently compute or model such higher-order or multiple-point statis-
tics becomes a key challenge. Although different algorithms exist for implementing
multiple-point (geo)statistics, the core idea is to use the training image as an ana-
log for learning higher-order spatial patterns. Basic elements of MPS algorithms are
(Mariethoz and Caers, 2014):

• Training images (T I) that contain spatial patterns; see Fig. 2
• Template (T ) for scanning training images; see column 1 of Fig. 4
• Data events (dev(x)), which are simultaneous (joint) combinations of attribute

values at template pixels; see column 2 of Fig. 4

Since templates are used to detect spatial patterns, attribute values at more than
two points are simultaneously considered in MPS. After obtaining data events from
training images, multiple point statistics, i.e. prob(x = z|tN), can be calculated
(Honarkhah and Caers, 2010). Together with actual or directly sampled data, e.g.,
land cover classes verified at particular cells from ground surveys, these learned
conditional probability values can subsequently be applied to estimate, or simulate,
attribute values at non-sampled locations.

In our work, we implement one of the many MPS algorithms available, namely
simple normal equation simulation (SNESIM), to estimate the required higher-order
statistics. We then employ simulation to generate synthetic images of fields, in order
to visually explicate the patterns learned by MPS. Several steps are involved in
SNESIM (Remy et al., 2009): (1) a search template Tj is first defined; (2) a search
tree specific to template Tj is then constructed; (3) the conditioning data are located
on the field (this step can be skipped for unconditional simulation); (4) a random
path that visits all locations to be simulated is established; then for each location
x along the path: (5) the conditioning data event dev j(x) defined by template Tj
is selected; (6) the corresponding conditional probability from the search tree is
retrieved; (7) and finally the simulated value from the conditional probability is
generated and added to the conditioning data set. In this work, we make use of the
Matlab library mGstat1 to run SNESIM; illustrative examples are given in Section
4.2.

Note that higher-order statistics are different from classic map algebra or image
processing operations, e.g., focal or zonal operations, or kernel filters. Higher-order
statistics consider neighboring interactions simultaneously rather than splitting them

1 http://mgstat.sourceforge.net/

http://mgstat.sourceforge.net/ 
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into (weighted) linear combinations of pairwise interactions. In classical map al-
gebra operations, neighbors are considered in a first-order (linear combination of
neighboring attribute values) or at most second-order (neighboring attribute values
weighted as function of pairwise distances) manner.

4 Case Study

In this section we demonstrate the utility of the geo-multipole concept in describing
spatial patterns. We do so by means of employing multi-point statistics to high-
lighted use cases, and comparing the results against those obtained by solely relying
on the geo-dipole and therefore two-point statistics such as variograms.

4.1 Sample Patterns

To illustrate the benefits of introducing the geo-multipole, as well as the feasibil-
ity of applying multiple-point (geo)statistics, we extracted several spatial patterns
(shown in Fig. 2) in the form of binary maps from remotely sensed images (shown
in Fig. 1). The binary maps are derived from remotely sensed images by threshold-
based brightness segmentation to distill target patterns. The proportions of black
pixels in those maps are quite similar (Pattern 1: 0.2697, Pattern 2: 0.258, Pattern
3: 0.257, Pattern 4: 0.267, Pattern 5: 0.269). The spatial patterns in the five binary
maps, however, are rather different. Pattern 1 is extracted from streams, thus show-
ing curvilinear patterns; patterns 2 and 3 are extracted from vegetation of a park
and a golf court, respectively, and thus show circular patterns; pattern 4 is extracted
from a residential area with rectangular patterns; and finally pattern 5 is extracted
from the public garden of a mission, showing bounded patterns of different simple
shapes.

4.2 Experimental Results and Discussion

The geo-dipole and the geo-multipole are compared in this section using the five
patterns described in Section 4.1. Specifically, variogram-based and MPS-based ap-
proaches are applied for quantifying the selected patterns. Two sets of experiments
are conducted in both approaches to highlight their differences: (1) a statistical de-
scription of the pattern, and (2) a simulation expression of the pattern, visualizing
the information contents conveyed by this description.
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Fig. 1 Five remotely sensed images at 1 meter spatial resolution.

Fig. 2 Binary maps of five spatial patterns (600×1000).

4.2.1 Description of the Pattern

Directional semivariograms and conditional multiple-point probabilities are calcu-
lated to show their ability to characterize the selected spatial pattern. As the five
examples show distinctive spatial patterns visually, the more different the results of
the employed statistics are, the more successful the methods are in detecting distinct
complex patterns.

Variogram-based Analysis

The two-directional semivariograms (i.e., West-East and North-South) for the five
examples are illustrated in Fig. 3. As can be seen, despite the visually different
patterns, their semivariograms for the two directions are generally similar, with a
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dramatic increase from distance lag 0 to about 50. The semivariograms also re-
main flat after the distance lag 60. The only salient characteristic is the bump at
the distance lag 50 of the North-South semivariogram for Pattern 1; this is due to
the repetition of multiple elongated (along West-East) features of relatively regular
width (pseudo-periodicity). This observation indicates that two-point (geo)statitsics
are barely enough to capture the complex spatial patterns embedded in these (urban)
structures.

Fig. 3 Directional semivariograms for the five examples (Left: West-East; Right: North-South).

MPS-based Analysis

In multiple-point (geo)statistics, one computes the conditional probability of class
occurrence given nearby classes in the template directly from the training image.
The order of the statistics employed is determined by the size and geometry of the
template. The lager the template, the more neighboring locations will be simulta-
neously considered. To show the capability of MPS in detecting different spatial
patterns, a simplified template (see the first column of Fig. 4 ) was used for pattern 1
and pattern 4. To determine the class, i.e., black (1) or white (0), at the central pixel,
its 8 neighbors are simultaneously considered as data events shown in column 2. The
class of the central pixel will be assigned to the one that has the highest conditional
probability. A data event’s conditional probability is calculated as the frequency of
occurrence, for example:

prob(z(x) = 0|tN) = #(z(x)=0|tN)
#(z(x)=0|tN)+#(z(x)=1|tN)

There are 28 possibilities for such a neighborhood configuration; in this work
we sampled 6 of them for illustration purposes. From Fig. 4, we can see that the
conditional probabilities using the 3× 3 template are different between pattern 1
and pattern 4. Note that only a relatively simple template is tested here; had a more
complicated template, such as a 80×80 square template, been used, the conditional
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probabilities would be even more different. Such an observation indicates the capa-
bility of MPS for learning complex patterns compared to the simple semivariogram-
based analysis.

Fig. 4 Conditional multiple-point probabilities for patterns 1 and 4 (only 6 out of 28 = 256 possi-
bilities are shown).

4.2.2 Simulation of Pattern

To visualize the information content of variograms and multipl-point statistics, un-
conditional simulations are conducted using modeled variograms and multiple-point
(geo)statistics, respectively. Our rationale here is that the more similar the simulated
patterns are to the original examples, the more feasible the approach is in terms of
learning spatial patterns.

Variogram-based Simulation

Unconditional moving average simulation via the Fast Fourier Transform (FFT) was
used in this work to simulate realizations of 2-D multivariate Gaussian fields given
the semivariogram model (i.e., exponential model); the resulting continuous images
were then thresholded using suitable cutoff values so as to reproduce the same pro-
portion of black pixels as the corresponding original binary images. From the Fig. 5,
we have mainly two observations: (1) although the original examples 1 and 4 (in Fig.
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2) show two different spatial patterns, their variogram-based simulations demon-
strate similar spatial patterns; (2) the spatial patterns of both simulations in Fig. 5
are not consistent with the original patterns (i.e., the curvilinear pattern of pattern
1 and polygonal pattern of pattern 4). These two observations showcase the limita-
tions of using variograms for simulating (and thus analyzing) spatial patterns; one
should not expect a two-point variogram function to capture complex higher-order
spatial patterns as those corresponding to elongated features or other curvilinear or
geometric shapes.

Fig. 5 Variogram-based simulations (pattern 1 and pattern 4).

MPS-based Simulation

The simple normal equation simulation (SNESIM) was applied in this work to gen-
erate the MPS-based simulation using the original patterns 1 and 4 as training im-
ages. The templates for both patterns were set to 80×80 squares. From the results
in Fig. 6, we can observe that the two simulations show significantly different pat-
terns, with pattern 1 showing more curvilinearity along the west-east direction and
pattern 4 showing more polygonal geometries. Furthermore, comparing the simu-
lated images with the original training images (in Fig. 2), we observe that the illus-
trated patterns in the simulations are relatively similar to the ones from the original
images, although there are still inconsistencies between the two. A viable explana-
tion for such inconsistencies is that the original training images (Fig. 2) are small
in size and their patterns are rather complex with many elementary patterns being
combined. For example, there are only four curved lines, which is the main pattern
visually in the pattern 1, but there are also many small clusters across the domain.
Summing up, despite some inconsistencies, the advantage of using MPS for learn-
ing spatial patterns is clearly highlighted by these simulations; particularly when
compared to variogram-based approaches. Evidently, more work is required (possi-
bly involving testing different MPS-based simulation methods) in order to improve
the similarity between simulated and training images. It should be stressed, how-
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ever, that the generation of spatial patterns with geometrical characteristics is a very
improbable outcome when using variogram-based simulation algorithms.

Fig. 6 MPS-based simulations (Pattern 1 and Pattern 4).

5 Conclusions and Future Work

In this work, we generalized the traditional two-point interaction model, the geo-
dipole, by introducing the geo-multipole concept whereby multiple-point interac-
tions are simultaneously modeled. Furthermore, a general framework for geographic
field analysis was discussed from both geographic and probabilistic perspectives.
All three conceptual models, the geo-atom, the geo-dipole and the geo-multipole,
are included in the framework, and they represent statistics of different order, i.e.
first-order statistics for the geo-atom, second-order for the geo-dipole and higher-
order for the geo-multipole. Different descriptive statistics, prediction techniques,
and concrete examples were given to demonstrate such a framework.

This work also discussed the application of multiple-point (geo)statistics as one
potential approach for estimating higher-order statistics for geographic fields. In
MPS, the training image is regarded as an explicit (non-parametric or better multi-
parametric) model that replaces the role of implicit statistical models. The only as-
sumption in using MPS is that the training image contains a representative collection
of the spatial patterns expected at the target site; thus, the target field characteris-
tics can be learned using approximate replicates contained in the training image. It
should be noted, however, that since MPS places extreme ”faith” in the training im-
age, there is a risk of over-parameterization; thus, more attention should be placed
on selecting appropriate training images, possibly considering more than one such
images (Mariethoz and Caers, 2014).

A series of experiments were conducted to illustrate the necessity and value of
using the geo-multipole in quantifying patterns in field data. In short, we showed that
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spatial patterns extracted from multiple-point (i.e., MPS-based) interaction models
are more realistic (better reproduce the complexity of patterns) compared to the ones
extracted from two-point (i.e., variogram-based) interaction models.

There are several potential research directions for future work. First, the appli-
cation details of multiple-point (geo)statistics for quantifying spatial patterns in ge-
ographic phenomena should be further explored. For example, the sensitivity of
template geometry and size, the impact of the training image size and pattern rich-
ness, as well as the feasibility of using other algorithms, should be studied in more
depth. Second, in addition to using MPS for contextual classification, MPS could
also be applied to spatial simulations. For example, the performance of cellular au-
tomata could be improved by incorporating information from training images using
MPS. Last but not least, techniques for estimating multiple-point interactions could
be extended from applications pertaining to field information to applications in-
volving other types of geographic information as well. For example, higher-order
interactions among different places (objects) in gazetteers could be considered to
supplement spatial signatures for place types when learning alignments between
geo-ontologies, as proposed in Zhu et al. (2016).
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