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Abstract. What prevents the Geospatial Semantic Web framdaoff

is not a missing architecture and protocol stack, m@side other as-
pects, the question of how Web services can beadomatically

discovered and whether and to what degree theysfgatiser re-
quirements. Two approaches turned out to be udefusemantic-
enabled geospatial information retrieval: subsuraptreasoning and
similarity measurement. However, while the formee @an be ap-
plied to query service ontologies described in OSVLer

WSMO/WSML, most existing similarity theories aré atae to cope
with logic-based service descriptions. This chaptegsents initial
results on developing a directed and context-avsnglarity meas-
ure that compares WSML concept descriptions forlapeand there-
fore supports retrieval within the upcoming GeoggdaGemantic
Web.

1 Introduction & M otivation

The idea of the Web service oriented architect@@A) is based on the publish-
find-bind pattern. To make a service available lo& internet the provider has to
publish relevant metadata to a service broker. Nexéquestor can discover (find)
registered services and establish a connectiord)tm them. From a syntactical
point of view the SOA-Stack offers specificatiorss feach part of the pattern:
WSDL for Web service description, UDDI as a repmsitfor description, discov-
ery and integration and SOAP as protocol for sertimding. However, to enable
semi-automatic service discovery, i.e. to spedify tapabilities of Web services
and search queries in an unambiguous and computepietable way, a semantic-
enabled markup language becomes necessary. Mordmside this common lan-
guage, a framework needs to be defined specifyiniglwmandatory and optional
metadata should be annotated. From the providerspective, service ontologies
described using OWL-S (OWL-S 2005) or WSMO (WSMQ28) satisfy these
requirements Both define functional and non-functional servireperties, service
grounding (binding) and a semantic-enabled anrmtatinguage. Although they
specify what has to be said about a service, tfieitien of a semantic Web ade-
guate search paradigm is out of their scope.

Over the last years of research, subsumptasaning and similarity measure-
ment turned out to be applicable for geospatiarimfation retrieval. The idea be-

1 A detailed comparison between both approachessiussed in (WSMO 2005b); note
however that it is written from the perspectivated WSMO community.
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hind subsumption-based retrieval as described kg BuKlien (Lutz 2006) is to
rearrange a queried application ontology takingareh concept into account and to
return a new taxonomy in which all subconceptshefinjected search phrase sat-
isfy the user’s requirements. However, using tpigraach forces the user to ensure
that the search concept is specified in a wayithatneither too generic (and there-
fore at a top level of the new hierarchy) nor tpedfic to get a sufficient result set.
In fact the search concept is a formal descriptibthe minimum characteristics all
retrieved concepts need to share. Moreover no me@sumt structure is provided
answering the question which of the returned corscéts best. However, this is
not necessarily a critical point, because all subepts at least share the requested
properties. In contrast, similarity computes thgrde of overlap between search
and compared-to concepts and, as measurementusgruptovides a (weak) order.
Both characteristics turn out to be useful for infation retrieval and matching
scenarios. On the one hand the determination otequnal overlap simplifies
phrasing an adequate search concept and on thehathd the results are ordered
by their degree of similarity to the searched cphc8imilarity-based retrieval does
not necessarily imply a subsumption relation betwsearch and compared-to con-
cepts (see Figure 1), in some cases even disjomtepts may be similar to each
other (e.g. Mother, Father). In contrast to subsiongased retrieval, the search
phrase typed into the system is not an artifiotadstruct, but the concept the user is
really looking for in the external service ontologythout presuming that all re-
turned concepts share a specific property.

In other words, the benefits similarity offetsring information retrieval, i.e. to
deliver a flexible degree of conceptual overla@teearched concept, stand against
shortcomings during the usage of the retrievedrinédion, namely that the results
do not necessarily fit the user’'s requirementsniadke the difference between both
approaches more evident one can imagine a seamaselspecified by using a
shared vocabulary (see Figure 1) to retrieve alicepts whose instanceserlap
with waterways. In contrast to the subsumption-dasgproach, similarity meas-
urement would additionally deliver concepts whasstdnces are locatéuside and
adjacentto waterways, and indicate through a lesser degfre@milarity that these
concepts are close to, but not identical with theris intended concept.

Following the above argumentation, similagtypports users during information
retrieval; however this presumes that the chosemlaity measure supports the
representation language of the inspected servio®I@@my). It turns out that, be-
sides the fact that several similarity theories enalndamentally different assump-
tions about how and what is measured (e.g. feasirgeometric model (Goldstone
2005)), most of them come with their own proprigtanowledge representation
format. In contrast, the majority of service ontpies are specified using standard-
ized or commonly agreed upon logic-based knowledgeesentation languages
and especially various kinds of description logithis leads to a gap between
available similarity theories and existing ontokgiwhich oppose a wider applica-
tion of similarity measures as part of the Geogp&@emantic Web.
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Figure 1. Subsumption and similarity-based retrieval using a shared vocabulary

Additionally, most proprietary knowledge represéinta formats associated with
existing similarity theories lack of a formal sertiag and also language constructs
proven to be useful for conceptualization (suchredation-filler pairs). This is a
crucial issue because in computer science the ptmbetween which similarity is
measured are representations of the concepts immgs. Consequently, the lack
of a precise and expressive representation landguag@npact on the quality of the
resulting similarity assessments as discussedano@icz 2005) for the feature-
based MDSM theory (Rodriguez 2004). The same argtsnieold for geometric
approaches to similarity based on Géardenfors’ ifeeonceptual spaces (Géarden-
fors 2000). To integrate relations and hence imgritnve expressivity of conceptual
spaces for similarity measures, Schwering (Schwe2®05) for instance combines
the geometric approach with classical network madkiitial approaches towards
similarity measures for expressive description degare discussed in (d’Amato
2005; Janowicz 2006). A theory applying similarity Web service comparison
based on OWL-S is presented in (Hau 2005); how#wdoes not take neighbor-
hood and alignment models into account. An overvaut existing similarity
theories, their application areas and charactesissi out of the scope of this chapter
and was recently discussed in (Goldstone 2004).

The chapter presents initial results on hawilarity measurement can support
semi-automatic information retrieval and matchiagks within the upcoming Geo-
spatial Semantic Web.

2 Similarity between WSML Concept Descriptions

This section describes the proposed similarity measent framework focusing
especially on attribute -filler (respectively rétet-filler) similarity. Starting with a
service integration scenario the used representititguage (WSML-Core) will be
introduced and the similarity framework will be dissed step by step.



2.1 Scenario

A European lodging portal on the Internet is prawdinformation about accom-
modations in cities attractive to tourists. To aveonaintenance costs the service
provider does not store the information in a lodatabase, but dynamically con-
nects to external Web services. However, to offeorssistent interface and vocabu-
lary to the portal users the service providesvis terminology. To do so, the types
of accommodations distinguished in the externalises have to be aligned to the
local terminology. One of the external servicedjveeng information about ac-
commodations in Amsterdam, provides separate counakrations for houseboats
and botel$ while the local ontology does not make this digion. The task of
similarity measurement within this scenario is togmse whether botels should be
displayed as houseboats, hotels or youth hostélsnathe local terminology pre-
sented via a Web interface to the user. The prouiderefore runs a similarity
query against the local ontology using the exteomsicept Botel as search phrase
(Cy. In addition, the service provider specifies arsh context, i.e. a description of
the minimum requirements all compared-to concepeirto fulfill (to be housings
in this case). The result of the query is a listswhilarity values indicating how
close the compared conceptualizations are. Itdaraed that both, the external ser-
vice and the accommodation portal, stick to a shamgcabulary (Figure 1) that
specifies the base concepts of the domain andthikatoncepts Botel, Houseboat,
Hotel and Youth_Hostel are defined in terms of #fiared vocabulary.

2.2 WSMO and WSM L

As similarity between concepts is based on theecHjgation and the chosen repre-
sentation language, this section gives a briefwoger about the Web Service Mod-
eling Language (WSML) and introduces simplified cgptualizations for the types
of accommodations distinguished in the scenario.

Based on the Web Service Modeling FrameworlSi##) developed by Fensel
and Bussler (Fensel 2002), the Web Service Mod@intplogy (WSMO) specifies
four main modeling elements describing various etspef semantic Web services
needed within the publish-find-bind pattern.

* Ontologies providing the formal semantics for goals, Web mmw and
mediators and linking human and machine terminotoggther.

* Goals specifying the user's aims with respect to the ested service
functionalities

Web services representing the offered functionality in termsitsfcapa-
bilities and non-functional properties.

* Mediators offering several types of mediators to overconteroperabil-
ity problems.

While WSMO describes what needs to be said, WSMISIW 2005) is the corre-
sponding modeling language providing a formal syrgad semantics to describe
these elements in a machine-interpretable and uigaimiss way. It supports both a

2 For instance: Hotel Amstel Botel Amsterdam: htipwiv.amstelbotel.nl/
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condensed machine oriented as well as a humanhieasintax and comes in five
flavors of different expressivity: WSML-Core, WSMRLE, WSML-Flight, WSML-
Rule and WSML-Full. Independent from a certain &atj WSML distinguishes
between following language elements: concepts (ed attributes), relations,
instances (of concepts and relations) and axiorosveider, the abilities to describe
them depend on the chosen WMSL flavor. For eacimexi#, additional non-
functional properties, mostly taken from the Dulliare schema, can be specified.

The similarity measurement framework introdiia® this chapter is defined for
the WSML-Core variant that is based on the intdéisewf description logics with
logic programming and acts as a base and exchaoggbulary for WSMO. In
WSML-Core the usage of relations is restrictedit@aty predicates and cardinality
restrictions are not supported. The WSML documeéniatecommends using con-
cept attributes instead of relations wherever fdssMoreover WSML-Core does
not allow for specifying the attribute featuresns#ive, symmetric, reflexive and
inverseOf within local concept descriptions. Howevhey can be added as global
axioms to the service ontology and linked to theerided concept via the Dublin
Core element dc:relation (WSML 2005; p. 27). AltgbuWSML distinguishes be-
tween constraining (ofType) and inferring (impligg€) attribute and relation de-
scriptions, the former can only be applied to dgtas within the Core variant
(WSML 2005; p. 17). WSML offers built-in datatypesych as strings, integers,
doubles or dates which correspond to XML Schematypés and operators
(XQuery functions) such as equal or numericGredtarnT The syntax and seman-
tics (mapped to Horn Logic) of the language comssrused within WSML-Core as
well as an exemplary concept definition are deplidgteTable 1. See (WSML 2005;
p. 27-30) for further details.

Tablel. Syntax and Semantics of WSML-Core

WSML-Core (syntax) Horn Logic (semantics) Example

n(headimpliedBy body) n(head — n(body) Youth_HostekubConceptOf
n(lexpror rexpr) a(lexpr) \V m(rexpr) {Building, Housing}
e e rioxen - wlreen " Gchdesrptionasvalue

n(.X1 fgember Of id2)_ ?dZ(Xl) - 'conceppt of a youth hoste|’
n(id1 §ubConceptOf id2) !d2(x) — id1(x) categonyof Type _integer

n(.X]{'.dz hasv_al ue XZD !dZ(XI’XZ_) - serviceimpliesTy_pe SelfService
n(id1[id2 impliesTypeid3])  |id3(y) « id1(x) A id2(x,y) offersimpliesType Room
n(id1[id2 of Type dt]) di(y) < id1(x) /A id2(x,y)

T(P(Xy,... Xn) P(Xa,... Xn)

Although we stick to the human readable syntax iwithis chapter, it has to be
mentioned that compared WSML concepts have to bprpcessed before similar-
ity is measured. The necessary steps are desdnb®dSML 2005; p.42f) and re-
sult in a WSML normal form (see also (Janowicz 2006he underlying idea is to
decompose complex descriptions to simple ones. Nateconcepts inherit all at-
tributes specified for their ancestors.

Table 2 shows possible conceptualizationgHertypes of accommodations de-
scribed in the scenario. In contrast to Hotel amditfi_Hostel (see Table 1), Botel
and Houseboat are defined as subconcepts of Boatver houseboats are usually
self serviced and are rented as a whole and nabper.



Table2. Conceptualizationsfor the Botel-Houseboat scenario

Botel Houseboat Hotel

subConceptOf {Boat, Housing} | subConceptOf {Boat, Hous- | subConceptOf
ing} {Building, Housing}

categonyofType _integer
serviceimpliesType Service categoryof Type _string categoryof Type _integer
offersimpliesType Room serviceimpliesType Self- serviceimpliesType Service
borders(ij impliesType Water- | Service offersimpliesType Room
way insideimpliesType Waterway

2.3 Similarity M easurement Framework

The presented theory measures similarity betweerepis (in normal form) by
stepwise comparing their WSML-Core descriptionsemeha high level of overlap
indicates high similarity and vice versa. To do &lbavailable language construc-
tors, i.e. subConceptOf / subRelationOf and attak{tespectively relation) as well
as the restrictions for their fillers by ofType antpliesType, have to be taken into
account. Similarity (sim) is therefore defined apaymorphic, binary and real-
valued functionX x Y - R [0,1] providing implementations for all languageneo
structs. The overall similarity (sgnbetween concepts is just the normalized (and
weighted) sum of the single similarities calculafedall compared-to parts of the
concept descriptions. A similarity value of 1 inalies that compared concepts are
equal, whereas 0 implies total dissimilarity. le flollowing o denotes the normali-
zation factor whilewis used to represent weightings.

In general a similarity measurement framewooksists of the following five
phases - their concrete implementation and relatiyortance however depends on
the chosen representation language.

» Define search concept and context

e Generate canonical normal form for compared corscept
» Align parts for comparison

* Apply similarity functions to compared-to parts

e Derive normalized overall similarity

Preprocessing steps to derive a WSML-Core nornmrah fgpphase 2) have been dis-
cussed in section 2.2 and are therefore not coregldeere in further detail. A more
complex example pointing out the importance of cacal representation for simi-
larity measurement is discussed in (Janowicz 2006).

3 Note thatborders(i) (borders from inside) corresponds to TPP iastleto NTTP in RCC8
(Cohn 1997); however these relations need more figad®n for 3D spatial
neighborhoods (Kuhn 2002).



2.3.1. Search Concept and Context

As depicted in Figure 1, a search concept (aldedaburce) is phrased in terms of
a shared vocabulary and compared to the concegiteddargets) in an examined
ontology. The search concept needs to be spedifiite same representation lan-
guage as the target concepts or mappings betwedartbuages have to be defined.
The target concepts are not necessarily just atepts in the examined ontology
but defined by a search context. The idea of canf®ee also the Matching Dis-
tance Similarity Measure MDSM (Rodriguez 2004))is the one hand to deter-
mine which parts from the service ontology havedéaccompared to the search con-
cept and on the other hand to influence the medsinailarity making it situation-
aware. Within the presented approach context isl isecombine the benefits of
subsumption reasoning and similarity-based rettidvés defined as a set of con-
cepts from the examined application ontology théter reclassification (compara-
ble to the Lutz & Klien approach (Lutz 2004)), awbconcepts of . Context =
{C| CC C. In other words, context determines the univesseliscourse (called
application domain in (Rodriguez 2004)). In the sgted accommodation sce-
nario, Ggs guarantees that all concepts proposed to be sitoilBotel at least act as
accommodations (subconcepts of Housing). Therefondarity to cargo ships or
ferries would not be measured, although they ardskof boats as well.

2.3.2. Alignment Matrix

After their expansion to WSML-Core normal form, cepts are lists of attributes
respectively relations (with restrictions for thélters), including also those inher-
ited from their ancestors. While search concept @mtext define which concepts
are compared to each other, next it has to be meted which parts (e.g. which
attribute-filler pairs) of the selected concepts eompared to each other. To do so,
a matrix G x C, of all possible combinations is generated. Sintilatan only be
computed between the same kind of language elemieatsattribute-filler pairs
using the ofType keyword are not compared to thessieg impliesType and so on.
Therefore such pairs are not further taken intamant Next, the following steps
are applied for all parts of the source conceptuietson and each parts of,@nd
C.are only selected once:

e If the matrix contains an identical attribute/ra@atfiller pair for the
search and the target concept, the similarity itcg pair is 1 and the nor-
malization factow is increased by 1.

« If the matrix contains an attribute/relation-fillpair out of the target con-
cept description where the attribute/relation ieniical to the pair in the
source concept but the fillers are different, samiiy between the fillers is
calculated. If there are more such pairs, the oitie te highest similarity
for the filler is selected andlis increased by 1.

» If for an attribute/relation-filler pair out of thgource concept description
no pair with an identical attribute/relation coltd found, the most similar
pair is selected where the similarity between tiébaites/relations can be
determined using a conceptual neighborhood grajhijncreased by 1.



 If no neighborhood graph is specified for the comepao attrib-
utes/relations, their similarity is measured byocourrence and is in-
creased by 1.

» Co-occurrence is also determined for supercondéphey are base sym-
bols (primitives) defined in the shared vocabuland therefore have no
description to be compared (inherited)is increased by 1.

» For parts of the search concept that could notdmpared similarity is 0
and g is increased by 1; while is not increased for parts of the target
concept that could not be aligned to correspongangs of the search con-
cept.

In other words, for each part of the search consejascription, a counterpart from
the compared-to concept’s description is chosenway that a meaningful similar-
ity can be computed between them afterwards anldl gaid is only examined once.
The alignment phase is directed, i.e. asymmetrad(Ruez 2004), in a sense that
the resulting overall similarity depends on therskalirection. Therefore sifCs,

Cy is not necessarily equal to (@, Cy). While each element of the search con-
cept's description is compared to an element frboendompared-to concept, some
parts of the latter may remain uncompared. Thédvigys the case if the target con-
cept is specified by more elements than the seaobept. The similarity value for
these remaining parts is always 0 while they doimatease the normalization fac-
tor 0. If however the search concept is described byenadements than can be
comparedg is increased by 1 for each remaining part. Assaltéhe overall simi-
larity is decreased. In other words, if the tamg@icept in the examined ontology is
more specific than requested by the user (via ¢lagch concept) this has no impact
on the measured overall similarity. On the othelesisimilarity decreases if the
user’s search concept is more specific than itqspart in the examined ontol-

ogy.
2.3.3. Similarity Functions

After determining which parts of the search andjygarconcept are compared to
each other, the similarity between these selectets jis calculated. Two situations
have to be taken into account here: the simildsgyween attribute/relation-filler
pairs depends on both, the similarity between théates (respectively relations)
and the similarity between the fillers. If the dits are concepts again, the similarity
framework is recursively applied to the comparddrs, i.e. an alignment matrix is
created for the compared concepts and similarityHe selected parts is measured.
If, however, the fillers are datatypes (expressadhe keyword ofType in WSML-
Core), similarity is determined via a matching fiioe and no recursion is neces-
sary.

sim (ag, aQ)= sim( @ g* sip (€ ¢ @)
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Equation 1 shows how the attribute-filesimilarity (simy) is calculated for concept
fillers, where simis the similarity between attributes and sisthe overall simi-

larity between their fillers. In addition to thisultiplicative approach similarity
could also be defined as (weighted) average beta#ebute and filler similarity,

which is discussed in section 3.

According to the alignment matrix similarityetiveen attributes (signcan be
determined in two ways: using a conceptual neighdad graph (ndw), as depicted
in Figure 2 for topological neighborhood, or via@ocurrence (sigy). The benefit
of conceptual neighborhoods is that they imply ey vetural notion of similarity -
which is just the inverse and normalized graphatic® between the compared at-
tributes (see Equation 2). Although the edge waiglst may vary with respect to
the chosen conceptual neighborhood (n) or inteseohatrix, they are usually set
to 1 per edge and symmetric (see also (Bruns 11998006) for similarity meas-
ures between spatial scenes).

DC @A@.

|
1
¥

PP 7 3 h‘i TPF Botel: borders(l) impliesType "Waterway
N2 P b s b/ ndw
Y . ST sttty
NTPPi %, y ¢ NTEE
a B Houseboat: inside  impliesType Waterway

Figure 2. Spatial neighborhood distance (Cohn 1997) and inter-attribute similarity

Equation 2 describes how the similarity betweeritattes is determined via their
relative distance within a conceptual neighborhadaere distangebetween aand
& is the shortest path trough the graph while mastadcg represent the longest
path.

max_distance - distange (a, ¢ )
max_distance

ndw(a .3 )=

In contrast the co-occurrence (also called commdrsismee approach) assumes
that attributes are more similar, if they share enmymmon sub-attributes. In Equa-
tion 3, sim, is defined as the ratio between the number ofisubss of both attrib-
utes and the number of sub-attributes of one dr bbthem (and all y are elements
of the context). This notion of co-occurrence isnparable to Jaccard similarity

4 Similarity for relations-filler pairs is calculateaccordingly, but is omitted here for reasons
of readability.
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coefficient (Tan 2005). Note that within WSML-Caiee sub-attribute relationship
is specified as implication using logical expreasigWSML 2005; p.29). The let-
ters x and y are chosen here, to indicate thasdinge equation is applied to attrib-
utes, relations and primitive concepts (base sys)tas well.

Hyl(yex)n(yc x )} (3)
Hyl(yc x)u(yc x )}

As can be seen from Equation 1, the attributerfaienilarity sim; calls the overall
similarity sim, to determine the overlap between involved confibpts. The over-
all similarity, however, again invokes sifo compare the attributes specified for
these concepts and so on. The process terminates thie concepts specified as
fillers have no concept description, i.e. are ®gabols (primitives) of the shared
vocabulary. According to section 2.3.2, their saritly is determined via Equation
3, where the subsumees are not attributes but sabpts. The same approach is
applied if super concepts defined in the head oftept definitions are base sym-
bols and therefore do not bequeath attributesdin subconcepts.

While the former paragraphs focused on corcasffillers, the similarity (sig)
between attribute-filler pairs with datatype fileis determined according to Equa-
tion 4. The function match() returns 1 for the satyme or if all instances of.d
could be converted tq @ithout losing information (respectively precisiauch as
from integers to decimals (WSML 2005; p.88)); otkise match() returns 0. Some
problems related to similarity with respect to dgtas are discussed in the further
work section.

Simo (%% F

simyg (ad, ad)= sin( @ 90 mat¢h gl ¥ )

2.3.4. Overall Similarity

Finally, the overall similarity (sig) between search and target concept is the nor-
malized sum of the similarities derived by compgrattributes with concept fillers
(via simy), attributes with datatype fillers (via sinand primitive concepts (base
symbols) in the head of and ¢(via simy). In Equation 5, (¢ ¢;) represents the
parts of the source and target concept selectecbfoparison within the alignment
matrix AMg;.

5
Smy(c, == Y. s ¢) ©

(c5 . JIAM,

3 Human Subject Testing

This section describes the results from a Web-bhsethn subject test, developed
to examine how users rate the similarity betweéribate/relation-filler pairs. After

explaining the goals of the test, subjects wer@addk make similarity estimations
using a slider that ranges from very dissimilaveéoy similar (which corresponds to
a value range between 0 and 100). The slider waatsd between the compared



-11 -

entities and its start position was on half wayween both. The test consists of
three steps, each containing four pairs to be coadpdn the first step subjects
were asked to rate similarity between spatial i@tat such aglisjoint andmeetsIn

the second step object pairs suctwaserwayandriver were compared. Finally, in
the third step subjects had to rate the simildyéfween combinations of both (e.g.
disjoint waterway— meets river.These similarity estimations were than compared
to automatically generated similarity values usihree different approaches: the
average, a weighted average with flexible weigtttimgpd the multiplicative ap-
proach depicted in Equation 1. The necessary atéribnd filler similarities were
taken from the first two steps of the test.

Out of 84 similarity estimations derived fratep three, 80 were taken for fur-
ther computation. As depicted in Figure 3, the iplittative approach produces the
best results. In 41 out of 80 cases the absolutatien does not exceed 10 points;
however the approach tends to underestimate inrglere contrast, the weighted
average tends to overestimate and the resultsodrasrprecise (33 out of 81). The
simple average approach was always overestimatidgtiae deviation from hu-
man’s estimations was high in general.

45

40 1

35 4

Number
]

- O Average
57 m Weighted Av erage
04 . = O Muttiplic ative Approach

010 11-20 21-30  31-40  #1-50 S51-60 61-70 71-80  81-90 91-100
Absolute Deviation

Figure 3. Absolute deviation between machine and human similarity estimations

To explain the idea of similarity estimations tee thubjects, they were told that
comparing relation-object pairs could be imaginedaing how probable two peo-
ple (describing a certain situation in differentrds) actually talk about the same
situation or not. It turns out, that this explaoatmay be a reason why some of the
human’s similarity estimations were inconsisterd arither captured by the multi-
plicative approach nor the weighted average Whikdde - disjointand lake —
channelwere rated to be dissimilar, the combination wated to be more similar
than expected. Subjects assumed that if a descolbjedt is inside a lake, it is dis-
joint from a channel.
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4 Discussion and Further Work

The directed and context-aware similarity theorgsented within this chapter is
able to measure the overlap between concepts igeaging WSML-Core, and can
therefore support integration and retrieval witharvice oriented architectures. In
contrast to previous work, it points out possiblays/ of combining subsumption
reasoning and similarity. Nevertheless, a lot ofkmemains to be done to apply
these initial results to sophisticated real wopglecations.

Referring to the accommodation scenario,ritglout that botels are more simi-
lar to hotels (0.67) than to houseboats (0.62)ourtly hostels (0.5). However, the
measured similarities depend on the representafitiie compared concepts within
the provider’'s ontology. Services focusing on vissestead of accommodations
may use different conceptualizations, making Batedl Houseboat more similar.
Note that from now on the accommodation service aan display botels on the
portal’'s Website whenever a user is looking forel®in Amsterdam, but (in con-
trast to subsumption-based retrieval) integratimg ¢oncept Botel into the local
knowledge base would lead to inconsistencies (@l mnhot a building).

It turns out, that while the comparison dfiatites (respectively relations) re-
stricted by concept fillers is well examined (d’Amma&2005; Schwering 2005; Ja-
nowicz 2006), the question of how to develop a rmegnl theory for datatype
similarity still remains unsolved. One of the ma@asons is missing information
about the level of measurement or non-linear meas{Bchade 2005). For instance,
the category of a hotel is measured in stars gm@sented as an integer on an ordi-
nal scale; while the distance to a beach is algheatatype integer but on an in-
terval scale: 100 meters to the beach is half ashras 200 meters, but a 2 star ho-
tel is not half as good as a 4 star hotel. In &mlditaccording to Equation 4, the
match function returns O for comparing decimaléntegers, although the lost pre-
cision may not be relevant for a user in a cersdimation. Taking complex XSD
types into account would further complicate theedmination of a meaningful no-
tion of datatype similarity (e.g. xs:sequence).

Another important issue is the extensionhef presented approach to cope with
more expressive WSML variants. The major questidsirey here is what can be
said (in terms of similarity) about compared logjiespressions (e.g. via generaliza-
tion). While the presented theory demonstrates hmwompare concepts within
WSML service ontologies, mediators, goals and céifiab were not discussed
within this approach. However further theories rhayefit from the idea of WSML
mediators as mapping rules (WSMO 2005a). Moredvkas to be examined how
users, such as the service provider, can phrasehseancepts without being do-
main experts and trained logicians. Finally, furthefined human subject tests are
necessary.
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