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Abstract. What prevents the Geospatial Semantic Web from taking off 
is not a missing architecture and protocol stack but, beside other as-
pects, the question of how Web services can be semi-automatically 
discovered and whether and to what degree they satisfy user re-
quirements. Two approaches turned out to be useful for semantic-
enabled geospatial information retrieval: subsumption reasoning and 
similarity measurement. However, while the former one can be ap-
plied to query service ontologies described in OWL-S or 
WSMO/WSML, most existing similarity theories are not able to cope 
with logic-based service descriptions. This chapter presents initial 
results on developing a directed and context-aware similarity meas-
ure that compares WSML concept descriptions for overlap and there-
fore supports retrieval within the upcoming Geospatial Semantic 
Web. 

1 Introduction & Motivation 

The idea of the Web service oriented architecture (SOA) is based on the publish-
find-bind pattern. To make a service available on the Internet the provider has to 
publish relevant metadata to a service broker. Next, a requestor can discover (find) 
registered services and establish a connection (bind) to them. From a syntactical 
point of view the SOA-Stack offers specifications for each part of the pattern: 
WSDL for Web service description, UDDI as a repository for description, discov-
ery and integration and SOAP as protocol for service binding. However, to enable 
semi-automatic service discovery, i.e. to specify the capabilities of Web services 
and search queries in an unambiguous and computer-interpretable way, a semantic-
enabled markup language becomes necessary. Moreover, beside this common lan-
guage, a framework needs to be defined specifying which mandatory and optional 
metadata should be annotated. From the provider’s perspective, service ontologies 
described using OWL-S (OWL-S 2005) or WSMO (WSMO 2005a) satisfy these 
requirements1. Both define functional and non-functional service properties, service 
grounding (binding) and a semantic-enabled annotation language. Although they 
specify what has to be said about a service, the definition of a semantic Web ade-
quate search paradigm is out of their scope. 
     Over the last years of research, subsumption reasoning and similarity measure-
ment turned out to be applicable for geospatial information retrieval. The idea be-

                                                           
1 A detailed comparison between both approaches is discussed in (WSMO 2005b); note 

however that it is written from the perspective of the WSMO community. 
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hind subsumption-based retrieval as described by Lutz & Klien (Lutz 2006) is to 
rearrange a queried application ontology taking a search concept into account and to 
return a new taxonomy in which all subconcepts of the injected search phrase sat-
isfy the user’s requirements. However, using this approach forces the user to ensure 
that the search concept is specified in a way that it is neither too generic (and there-
fore at a top level of the new hierarchy) nor too specific to get a sufficient result set. 
In fact the search concept is a formal description of the minimum characteristics all 
retrieved concepts need to share. Moreover no measurement structure is provided 
answering the question which of the returned concepts fits best. However, this is 
not necessarily a critical point, because all subconcepts at least share the requested 
properties. In contrast, similarity computes the degree of overlap between search 
and compared-to concepts and, as measurement structure, provides a (weak) order. 
Both characteristics turn out to be useful for information retrieval and matching 
scenarios. On the one hand the determination of conceptual overlap simplifies 
phrasing an adequate search concept and on the other hand the results are ordered 
by their degree of similarity to the searched concept. Similarity-based retrieval does 
not necessarily imply a subsumption relation between search and compared-to con-
cepts (see Figure 1), in some cases even disjoint concepts may be similar to each 
other (e.g. Mother, Father). In contrast to subsumption-based retrieval, the search 
phrase typed into the system is not an artificial construct, but the concept the user is 
really looking for in the external service ontology without presuming that all re-
turned concepts share a specific property.  
     In other words, the benefits similarity offers during information retrieval, i.e. to 
deliver a flexible degree of conceptual overlap to a searched concept, stand against 
shortcomings during the usage of the retrieved information, namely that the results 
do not necessarily fit the user’s requirements. To make the difference between both 
approaches more evident one can imagine a search phrase specified by using a 
shared vocabulary (see Figure 1) to retrieve all concepts whose instances overlap 
with waterways. In contrast to the subsumption-based approach, similarity meas-
urement would additionally deliver concepts whose instances are located inside and 
adjacent to waterways, and indicate through a lesser degree of similarity that these 
concepts are close to, but not identical with the user’s intended concept.  
     Following the above argumentation, similarity supports users during information 
retrieval; however this presumes that the chosen similarity measure supports the 
representation language of the inspected service (ontology). It turns out that, be-
sides the fact that several similarity theories make fundamentally different assump-
tions about how and what is measured (e.g. feature vs. geometric model (Goldstone 
2005)), most of them come with their own proprietary knowledge representation 
format. In contrast, the majority of service ontologies are specified using standard-
ized or commonly agreed upon logic-based knowledge representation languages 
and especially various kinds of description logics. This leads to a gap between 
available similarity theories and existing ontologies which oppose a wider applica-
tion of similarity measures as part of the Geospatial Semantic Web. 



- 3 - 

 

 

Figure 1. Subsumption and similarity-based retrieval using a shared vocabulary 

Additionally, most proprietary knowledge representation formats associated with 
existing similarity theories lack of a formal semantics and also language constructs 
proven to be useful for conceptualization (such as relation-filler pairs). This is a 
crucial issue because in computer science the concepts between which similarity is 
measured are representations of the concepts in our minds. Consequently, the lack 
of a precise and expressive representation language has impact on the quality of the 
resulting similarity assessments as discussed in (Janowicz 2005) for the feature-
based MDSM theory (Rodriguez 2004). The same arguments hold for geometric 
approaches to similarity based on Gärdenfors’ idea of conceptual spaces (Gärden-
fors 2000). To integrate relations and hence improve the expressivity of conceptual 
spaces for similarity measures, Schwering (Schwering 2005) for instance combines 
the geometric approach with classical network models. Initial approaches towards 
similarity measures for expressive description logics are discussed in (d’Amato 
2005; Janowicz 2006). A theory applying similarity for Web service comparison 
based on OWL-S is presented in (Hau 2005); however it does not take neighbor-
hood and alignment models into account. An overview about existing similarity 
theories, their application areas and characteristics is out of the scope of this chapter 
and was recently discussed in (Goldstone 2004). 
     The chapter presents initial results on how similarity measurement can support 
semi-automatic information retrieval and matching tasks within the upcoming Geo-
spatial Semantic Web.  

2 Similarity between WSML Concept Descriptions 

This section describes the proposed similarity measurement framework focusing 
especially on attribute -filler (respectively relation-filler) similarity. Starting with a 
service integration scenario the used representation language (WSML-Core) will be 
introduced and the similarity framework will be discussed step by step.  
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2.1 Scenario 

A European lodging portal on the Internet is providing information about accom-
modations in cities attractive to tourists. To avoid maintenance costs the service 
provider does not store the information in a local database, but dynamically con-
nects to external Web services. However, to offer a consistent interface and vocabu-
lary to the portal users the service provides its own terminology. To do so, the types 
of accommodations distinguished in the external services have to be aligned to the 
local terminology. One of the external services, delivering information about ac-
commodations in Amsterdam, provides separate conceptualizations for houseboats 
and botels2 while the local ontology does not make this distinction. The task of 
similarity measurement within this scenario is to propose whether botels should be 
displayed as houseboats, hotels or youth hostels within the local terminology pre-
sented via a Web interface to the user. The provider therefore runs a similarity 
query against the local ontology using the external concept Botel as search phrase 
(Cs). In addition, the service provider specifies a search context, i.e. a description of 
the minimum requirements all compared-to concepts need to fulfill (to be housings 
in this case). The result of the query is a list of similarity values indicating how 
close the compared conceptualizations are. It is assumed that both, the external ser-
vice and the accommodation portal, stick to a shared vocabulary (Figure 1) that 
specifies the base concepts of the domain and that the concepts Botel, Houseboat, 
Hotel and Youth_Hostel are defined in terms of this shared vocabulary. 

2.2 WSMO and WSML  

As similarity between concepts is based on their specification and the chosen repre-
sentation language, this section gives a brief overview about the Web Service Mod-
eling Language (WSML) and introduces simplified conceptualizations for the types 
of accommodations distinguished in the scenario.  
     Based on the Web Service Modeling Framework (WSMF) developed by Fensel 
and Bussler (Fensel 2002), the Web Service Modeling Ontology (WSMO) specifies 
four main modeling elements describing various aspects of semantic Web services 
needed within the publish-find-bind pattern.  

• Ontologies providing the formal semantics for goals, Web services and 
mediators and linking human and machine terminology together. 

• Goals specifying the user’s aims with respect to the requested service 
functionalities 

• Web services representing the offered functionality in terms of its capa-
bilities and non-functional properties. 

• Mediators offering several types of mediators to overcome interoperabil-
ity problems. 

While WSMO describes what needs to be said, WSML (WSML 2005) is the corre-
sponding modeling language providing a formal syntax and semantics to describe 
these elements in a machine-interpretable and unambiguous way. It supports both a 
                                                           
2 For instance: Hotel Amstel Botel Amsterdam: http://www.amstelbotel.nl/ 
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condensed machine oriented as well as a human readable syntax and comes in five 
flavors of different expressivity: WSML-Core, WSML-DL, WSML-Flight, WSML-
Rule and WSML-Full. Independent from a certain variant, WSML distinguishes 
between following language elements: concepts (and their attributes), relations, 
instances (of concepts and relations) and axioms. However, the abilities to describe 
them depend on the chosen WMSL flavor. For each element, additional non-
functional properties, mostly taken from the Dublin Core schema, can be specified.  
     The similarity measurement framework introduced in this chapter is defined for 
the WSML-Core variant that is based on the intersection of description logics with 
logic programming and acts as a base and exchange vocabulary for WSMO. In 
WSML-Core the usage of relations is restricted to binary predicates and cardinality 
restrictions are not supported. The WSML documentation recommends using con-
cept attributes instead of relations wherever possible. Moreover WSML-Core does 
not allow for specifying the attribute features transitive, symmetric, reflexive and 
inverseOf within local concept descriptions. However, they can be added as global 
axioms to the service ontology and linked to the intended concept via the Dublin 
Core element dc:relation (WSML 2005; p. 27). Although WSML distinguishes be-
tween constraining (ofType) and inferring (impliesType) attribute and relation de-
scriptions, the former can only be applied to datatypes within the Core variant 
(WSML 2005; p. 17). WSML offers built-in datatypes, such as strings, integers, 
doubles or dates which correspond to XML Schema datatypes and operators 
(XQuery functions) such as equal or numericGreaterThan. The syntax and seman-
tics (mapped to Horn Logic) of the language constructs used within WSML-Core as 
well as an exemplary concept definition are depicted in Table 1. See (WSML 2005; 
p. 27-30) for further details.  

Table 1.  Syntax and Semantics of WSML-Core 

WSML-Core (syntax) Horn Logic (semantics) Example 
π(head impliedBy body.) π(head) ← π(body) 
π(lexpr or rexpr) π(lexpr) ∨ π(rexpr) 
π(lexpr and rexpr) π(lexpr) ∧ π(rexpr) 
π(X1 memberOf id2) id2(X1) 
π(id1 subConceptOf id2) id2(x) ← id1(x) 
π(X1[id2 hasValue X2]) id2(X1,X2) 
π(id1[id2 impliesType id3]) id3(y) ← id1(x) ∧ id2(x,y) 
π(id1[id2 ofType dt]) dt(y) ← id1(x) ∧ id2(x,y) 
π(p(X1,...,Xn)) p(X1,...,Xn) 

Youth_Hostel subConceptOf      
     {Building, Housing} 
nonFunctionalProperties 
     dc#description hasValue  
           ‘concept of a youth hostel’ 
category ofType _integer 
service impliesType SelfService 
offers impliesType Room    

 
Although we stick to the human readable syntax within this chapter, it has to be 
mentioned that compared WSML concepts have to be preprocessed before similar-
ity is measured. The necessary steps are described in (WSML 2005; p.42f) and re-
sult in a WSML normal form (see also (Janowicz 2006)). The underlying idea is to 
decompose complex descriptions to simple ones. Note that concepts inherit all at-
tributes specified for their ancestors. 
     Table 2 shows possible conceptualizations for the types of accommodations de-
scribed in the scenario. In contrast to Hotel and Youth_Hostel (see Table 1), Botel 
and Houseboat are defined as subconcepts of Boat; however houseboats are usually 
self serviced and are rented as a whole and not per room. 



- 6 - 

 

 

Table 2.  Conceptualizations for the Botel-Houseboat scenario 

Botel Houseboat Hotel 
subConceptOf {Boat, Housing} 
 
category ofType _integer 
service impliesType Service 
offers impliesType Room 
borders(i)3 impliesType Water-
way 

subConceptOf {Boat, Hous-
ing} 
 
category ofType _string 
service impliesType Self-
Service 
inside impliesType Waterway    

subConceptOf  
           {Building, Housing} 
 
category ofType _integer 
service impliesType Service 
offers impliesType Room  

2.3 Similarity Measurement Framework 

The presented theory measures similarity between concepts (in normal form) by 
stepwise comparing their WSML-Core descriptions, where a high level of overlap 
indicates high similarity and vice versa. To do so, all available language construc-
tors, i.e. subConceptOf / subRelationOf and attribute (respectively relation) as well 
as the restrictions for their fillers by ofType and impliesType, have to be taken into 
account. Similarity (sim) is therefore defined as a polymorphic, binary and real-
valued function X × Y � � [0,1] providing implementations for all language con-
structs. The overall similarity (simo) between concepts is just the normalized (and 
weighted) sum of the single similarities calculated for all compared-to parts of the 
concept descriptions. A similarity value of 1 indicates that compared concepts are 
equal, whereas 0 implies total dissimilarity. In the following σ denotes the normali-
zation factor while ω is used to represent weightings. 
     In general a similarity measurement framework consists of the following five 
phases - their concrete implementation and relative importance however depends on 
the chosen representation language.  

• Define search concept and context  

• Generate canonical normal form for compared concepts 

• Align parts for comparison 

• Apply similarity functions to compared-to parts 
• Derive normalized overall similarity 

Preprocessing steps to derive a WSML-Core normal form (phase 2) have been dis-
cussed in section 2.2 and are therefore not considered here in further detail. A more 
complex example pointing out the importance of canonical representation for simi-
larity measurement is discussed in (Janowicz 2006). 

                                                           
3 Note that borders(i) (borders from inside) corresponds to TPP and inside to NTTP in RCC8 

(Cohn 1997); however these relations need more investigation for 3D spatial 
neighborhoods (Kuhn 2002). 
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2.3.1. Search Concept and Context 

As depicted in Figure 1, a search concept (also called source) is phrased in terms of 
a shared vocabulary and compared to the concepts (called targets) in an examined 
ontology. The search concept needs to be specified in the same representation lan-
guage as the target concepts or mappings between the languages have to be defined. 
The target concepts are not necessarily just all concepts in the examined ontology 
but defined by a search context. The idea of context (see also the Matching Dis-
tance Similarity Measure MDSM (Rodriguez 2004)) is on the one hand to deter-
mine which parts from the service ontology have to be compared to the search con-
cept and on the other hand to influence the measured similarity making it situation-
aware. Within the presented approach context is used to combine the benefits of 
subsumption reasoning and similarity-based retrieval. It is defined as a set of con-
cepts from the examined application ontology that, after reclassification (compara-
ble to the Lutz & Klien approach (Lutz 2004)), are subconcepts of Clcs: Context = 
{C| C⊑Clcs}. In other words, context determines the universe of discourse (called 
application domain in (Rodriguez 2004)). In the presented accommodation sce-
nario, Clcs guarantees that all concepts proposed to be similar to Botel at least act as 
accommodations (subconcepts of Housing). Therefore similarity to cargo ships or 
ferries would not be measured, although they are kinds of boats as well. 

2.3.2. Alignment Matrix 

After their expansion to WSML-Core normal form, concepts are lists of attributes 
respectively relations (with restrictions for their fillers), including also those inher-
ited from their ancestors. While search concept and context define which concepts 
are compared to each other, next it has to be determined which parts (e.g. which 
attribute-filler pairs) of the selected concepts are compared to each other. To do so, 
a matrix Cs × Ct of all possible combinations is generated. Similarity can only be 
computed between the same kind of language elements, i.e. attribute-filler pairs 
using the ofType keyword are not compared to those using impliesType and so on. 
Therefore such pairs are not further taken into account. Next, the following steps 
are applied for all parts of the source concept description and each parts of Cs and 
Ct are only selected once: 

• If the matrix contains an identical attribute/relation-filler pair for the 
search and the target concept, the similarity for this pair is 1 and the nor-
malization factor σ is increased by 1.   

• If the matrix contains an attribute/relation-filler pair out of the target con-
cept description where the attribute/relation is identical to the pair in the 
source concept but the fillers are different, similarity between the fillers is 
calculated. If there are more such pairs, the one with the highest similarity 
for the filler is selected and σ is increased by 1. 

• If for an attribute/relation-filler pair out of the source concept description 
no pair with an identical attribute/relation could be found, the most similar 
pair is selected where the similarity between the attributes/relations can be 
determined using a conceptual neighborhood graph; σ is increased by 1. 
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• If no neighborhood graph is specified for the compared-to attrib-
utes/relations, their similarity is measured by co-occurrence and σ is in-
creased by 1. 

• Co-occurrence is also determined for superconcepts if they are base sym-
bols (primitives) defined in the shared vocabulary and therefore have no 
description to be compared (inherited); σ is increased by 1. 

• For parts of the search concept that could not be compared similarity is 0 
and σ is increased by 1; while σ is not increased for parts of the target 
concept that could not be aligned to corresponding parts of the search con-
cept. 

In other words, for each part of the search concept’s description, a counterpart from 
the compared-to concept’s description is chosen in a way that a meaningful similar-
ity can be computed between them afterwards and each part is only examined once. 
The alignment phase is directed, i.e. asymmetric (Rodriguez 2004), in a sense that 
the resulting overall similarity depends on the search direction. Therefore simo(Cs, 
Ct) is not necessarily equal to simo(Ct,Cs). While each element of the search con-
cept’s description is compared to an element from the compared-to concept, some 
parts of the latter may remain uncompared. This is always the case if the target con-
cept is specified by more elements than the search concept. The similarity value for 
these remaining parts is always 0 while they do not increase the normalization fac-
tor σ. If however the search concept is described by more elements than can be 
compared, σ is increased by 1 for each remaining part. As a result the overall simi-
larity is decreased. In other words, if the target concept in the examined ontology is 
more specific than requested by the user (via the search concept) this has no impact 
on the measured overall similarity. On the other side, similarity decreases if the 
user’s search concept is more specific than its counterpart in the examined ontol-
ogy. 

2.3.3. Similarity Functions 

After determining which parts of the search and target concept are compared to 
each other, the similarity between these selected parts is calculated. Two situations 
have to be taken into account here: the similarity between attribute/relation-filler 
pairs depends on both, the similarity between the attributes (respectively relations) 
and the similarity between the fillers. If the fillers are concepts again, the similarity 
framework is recursively applied to the compared fillers, i.e. an alignment matrix is 
created for the compared concepts and similarity for the selected parts is measured. 
If, however, the fillers are datatypes (expressed via the keyword ofType in WSML-
Core), similarity is determined via a matching function and no recursion is neces-
sary.  

( , ) ( , ) * ,cf s t a s t o s tsim ac ac sim a a sim (c c ) =  (1) 
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Equation 1 shows how the attribute-filler4 similarity (simcf) is calculated for concept 
fillers, where sima is the similarity between attributes and simo is the overall simi-
larity between their fillers. In addition to this multiplicative approach similarity 
could also be defined as (weighted) average between attribute and filler similarity, 
which is discussed in section 3.  
     According to the alignment matrix similarity between attributes (sima) can be 
determined in two ways: using a conceptual neighborhood graph (ndw), as depicted 
in Figure 2 for topological neighborhood, or via co-occurrence (simco). The benefit 
of conceptual neighborhoods is that they imply a very natural notion of similarity - 
which is just the inverse and normalized graph distance between the compared at-
tributes (see Equation 2). Although the edge weightings may vary with respect to 
the chosen conceptual neighborhood (n) or intersection matrix, they are usually set 
to 1 per edge and symmetric (see also (Bruns 1996; Li 2006) for similarity meas-
ures between spatial scenes). 
  

 

Figure 2. Spatial neighborhood distance (Cohn 1997) and inter-attribute similarity 

Equation 2 describes how the similarity between attributes is determined via their 
relative distance within a conceptual neighborhood, where distancen between as and 
at is the shortest path trough the graph while max_distancen represent the longest 
path. 

n n s t
s t

n

max_distance - distance (a ,a )
ndw(a ,a )=

max_distance
 

(2) 

In contrast the co-occurrence (also called common subsumee approach) assumes 
that attributes are more similar, if they share more common sub-attributes. In Equa-
tion 3, simco is defined as the ratio between the number of subsumees of both attrib-
utes and the number of sub-attributes of one or both of them (and all y are elements 
of the context). This notion of co-occurrence is comparable to Jaccard similarity 
                                                           
4 Similarity for relations-filler pairs is calculated accordingly, but is omitted here for reasons 

of readability.    
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coefficient (Tan 2005). Note that within WSML-Core the sub-attribute relationship 
is specified as implication using logical expressions (WSML 2005; p.29). The let-
ters x and y are chosen here, to indicate that the same equation is applied to attrib-
utes, relations and primitive concepts (base symbols) as well. 

s t
co s t

s t

|{ y |( y x ) ( y x )}|
sim ( x ,x )

|{ y |( y x ) ( y x )}|
= l * l

l + l
 

(3) 

As can be seen from Equation 1, the attribute-filler similarity simcf calls the overall 
similarity simo to determine the overlap between involved concept fillers. The over-
all similarity, however, again invokes sima to compare the attributes specified for 
these concepts and so on. The process terminates when the concepts specified as 
fillers have no concept description, i.e. are base symbols (primitives) of the shared 
vocabulary. According to section 2.3.2, their similarity is determined via Equation 
3, where the subsumees are not attributes but subconcepts. The same approach is 
applied if super concepts defined in the head of concept definitions are base sym-
bols and therefore do not bequeath attributes to their subconcepts. 
     While the former paragraphs focused on concepts as fillers, the similarity (simdf) 
between attribute-filler pairs with datatype fillers is determined according to Equa-
tion 4. The function match() returns 1 for the same type or if all instances of ds 
could be converted to dt without losing information (respectively precision; such as 
from integers to decimals (WSML 2005; p.88)); otherwise match() returns 0. Some 
problems related to similarity with respect to datatypes are discussed in the further 
work section. 

( , ) ( , ) ( , )df s t a s t s tsim ad ad sim a a match d d= ∗  (4) 

2.3.4. Overall Similarity 

Finally, the overall similarity (simo) between search and target concept is the nor-
malized sum of the similarities derived by comparing attributes with concept fillers 
(via simcf), attributes with datatype fillers (via simdf) and primitive concepts (base 
symbols) in the head of cs and ct (via simco). In Equation 5, (csi, ctj) represents the 
parts of the source and target concept selected for comparison within the alignment 
matrix AMst. 

( , )

1
( , ) ( , )

i j

s t sti j

o s t s t

c c AM

sim c c sim c c
σ ∈

= ∑  
(5) 

3 Human Subject Testing 

This section describes the results from a Web-based human subject test, developed 
to examine how users rate the similarity between attribute/relation-filler pairs. After 
explaining the goals of the test, subjects were asked to make similarity estimations 
using a slider that ranges from very dissimilar to very similar (which corresponds to 
a value range between 0 and 100). The slider was situated between the compared 
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entities and its start position was on half way between both. The test consists of 
three steps, each containing four pairs to be compared. In the first step subjects 
were asked to rate similarity between spatial relations such as disjoint and meets. In 
the second step object pairs such as waterway and river were compared. Finally, in 
the third step subjects had to rate the similarity between combinations of both (e.g. 
disjoint waterway – meets river).These similarity estimations were than compared 
to automatically generated similarity values using three different approaches: the 
average, a weighted average with flexible weightings and the multiplicative ap-
proach depicted in Equation 1. The necessary attribute and filler similarities were 
taken from the first two steps of the test.  
     Out of 84 similarity estimations derived from step three, 80 were taken for fur-
ther computation. As depicted in Figure 3, the multiplicative approach produces the 
best results. In 41 out of 80 cases the absolute deviation does not exceed 10 points; 
however the approach tends to underestimate in general. In contrast, the weighted 
average tends to overestimate and the results are not as precise (33 out of 81). The 
simple average approach was always overestimating and the deviation from hu-
man’s estimations was high in general.  

     

Figure 3. Absolute deviation between machine and human similarity estimations 

To explain the idea of similarity estimations to the subjects, they were told that 
comparing relation-object pairs could be imagined as rating how probable two peo-
ple (describing a certain situation in different words) actually talk about the same 
situation or not. It turns out, that this explanation may be a reason why some of the 
human’s similarity estimations were inconsistent and neither captured by the multi-
plicative approach nor the weighted average While inside - disjoint and lake – 
channel were rated to be dissimilar, the combination was rated to be more similar 
than expected. Subjects assumed that if a described object is inside a lake, it is dis-
joint from a channel.  
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4 Discussion and Further Work 

The directed and context-aware similarity theory presented within this chapter is 
able to measure the overlap between concepts specified using WSML-Core, and can 
therefore support integration and retrieval within service oriented architectures. In 
contrast to previous work, it points out possible ways of combining subsumption 
reasoning and similarity. Nevertheless, a lot of work remains to be done to apply 
these initial results to sophisticated real world applications.  
     Referring to the accommodation scenario, it turns out that botels are more simi-
lar to hotels (0.67) than to houseboats (0.62) or youth hostels (0.5). However, the 
measured similarities depend on the representation of the compared concepts within 
the provider’s ontology. Services focusing on vessels instead of accommodations 
may use different conceptualizations, making Botel and Houseboat more similar. 
Note that from now on the accommodation service can also display botels on the 
portal’s Website whenever a user is looking for hotels in Amsterdam, but (in con-
trast to subsumption-based retrieval) integrating the concept Botel into the local 
knowledge base would lead to inconsistencies (a botel is not a building).  
      It turns out, that while the comparison of attributes (respectively relations) re-
stricted by concept fillers is well examined (d’Amato 2005; Schwering 2005; Ja-
nowicz 2006), the question of how to develop a meaningful theory for datatype 
similarity still remains unsolved. One of the main reasons is missing information 
about the level of measurement or non-linear measures (Schade 2005). For instance, 
the category of a hotel is measured in stars and represented as an integer on an ordi-
nal scale; while the distance to a beach is also of the datatype integer but on an in-
terval scale: 100 meters to the beach is half as much as 200 meters, but a 2 star ho-
tel is not half as good as a 4 star hotel. In addition, according to Equation 4, the 
match function returns 0 for comparing decimals to integers, although the lost pre-
cision may not be relevant for a user in a certain situation. Taking complex XSD 
types into account would further complicate the determination of a meaningful no-
tion of datatype similarity (e.g. xs:sequence).  
      Another important issue is the extension of the presented approach to cope with 
more expressive WSML variants. The major question arising here is what can be 
said (in terms of similarity) about compared logical expressions (e.g. via generaliza-
tion). While the presented theory demonstrates how to compare concepts within 
WSML service ontologies, mediators, goals and capabilities were not discussed 
within this approach. However further theories may benefit from the idea of WSML 
mediators as mapping rules (WSMO 2005a). Moreover it has to be examined how 
users, such as the service provider, can phrase search concepts without being do-
main experts and trained logicians. Finally, further refined human subject tests are 
necessary. 
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