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Abstract. While similarity has gained in importance in research about
information retrieval on the (geospatial) semantic Web, information re-
trieval paradigms and their integration into existing spatial data in-
frastructures have not been examined in detail so far. In this paper,
intensional and extensional paradigms for similarity-based information
retrieval are introduced. The differences between these paradigms with
respect to the query and results are pointed out. Web user interfaces im-
plementing two of these paradigms are presented, and steps towards the
integration of the SIM-DL similarity theory into a spatial data infrastruc-
ture are discussed. Remaining difficulties are highlighted and directions
of further work are given.

1 Introduction and Motivation

Semantics-based information retrieval [1, 2] plays an increasing role in GIScience
and research on the geospatial semantic Web. In general, two approaches can be
distinguished, those based on classical subsumption reasoning and those based on
so-called non-standard inference techniques [3, 4] – similarity being one of them.
While the number of similarity theories for information retrieval is increasing,
the number of real geo-application is still low. So far, the most prominent reason
was that existing theories were not able to handle the expressivity of description
logics used by ontologies on the (geospatial) semantic Web. Recently developed
theories [5–8] bear the potential to close this gap, which moves the focus towards
new challenges. This paper addresses one of these challenges: How can similarity
be integrated within existing spatial data infrastructures (SDIs) to support users
during information retrieval?

The paper is based on the SIM-DL similarity theory [7], which is introduced
in section 2. This section also describes relevant background in the areas of sim-
ilarity measurement, description logics, and SDIs. Sections 3 and 4 present the
two main contributions of the paper. In section 3, we present a classification
of semantics-based information retrieval paradigms. We investigate the differ-
ences between subsumption and similarity-based approaches in terms of how a
query is phrased and which results can be expected. The examined paradigms
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are grouped into intensional and extensional approaches (and combinations of
both). In section 4, we discuss how the similarity-based paradigms can be im-
plemented using a SDI and what difficulties have to be overcome. Section 5
concludes the paper and points out directions for future research.

In order to illustrate our work, the following scenario is used: A tourist,
Nicole, is planing a trip to Utah, US. As a passionate canoeist she would like to
spend some time canoeing. Since she has never been to Utah before, she does not
know any waterbodies that might please her. However, she does remember some
rivers and lakes that she canoed a few years ago while visiting friends in Canada.
Therefore, she decides to search for this kind of features browsing services on
the Web. We assume that these services are part of a SDI that also includes a
catalogue service providing information about available geographic feature types
and a web similarity service (WSS) based on the SIM-DL server [7].

2 Related Work

This section introduces related work. The objectives and basic components of
SDIs are presented in section 2.1. Sections 2.2 and 2.3 describe similarity mea-
surement and description logics, respectively. These provide the basis for the
SIM-DL similarity theory introduced in section 2.4.

2.1 Spatial Data Infrastructures

The main goal of SDIs is to offer access to distributed data sources. The de-
velopment of interoperability specifications – and here most prominently the
work within the Open Geospatial Consortium3 (OGC) – has created a tech-
nology evolution that moves from standalone GIS applications towards a more
loosely coupled and distributed model based on self-contained, specialized, and
interoperable (Web) services [9]. In such an infrastructure, where resources are
distributed and controlled by different organizations, catalogue services provide
a means for describing the services’ locations and capabilities. They store meta-
data and support users in discovering and using these resources. The OGC has
specified a catalogue service for the Web (CS-W) and related metadata profiles.

While thus the SDI concept promises an efficient sharing and reuse of geo-
graphic data among heterogeneous user groups [9, 10], most existing SDIs are
still at an early stage in their development. Many just offer geoportals that in-
tegrate on-line map viewers and catalogue services for their data holdings [11,
12].

In this work, we focus on geographic data provided through the Web feature
service interface (WFS) and organized into geographic feature types. In SDIs,
metadata about feature types can be stored in so-called feature catalogues [13].
Feature catalogues define the types of features, their operations, attributes, and

3 The OpenGIS standards and specifications are available from
http://www.opengeospatial.org/standards/.
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associations. Their goal is to provide a better understanding of geographic data
in order to enable users to judge whether the data fits their purpose. An imple-
mentation of a feature type catalogue as an extension package for the ebRIM
Profile of the CS-W has been proposed [14].

2.2 Similarity Measurement

Similarity has its origin in cognitive science and was established as a theory to in-
vestigate how entities are grouped into categories, and why some categories (and
their members) are comparable while others are not [15, 16]. Semantic similarity
measures the proximity of meanings as opposed to purely structural compari-
son. While entities can be expressed in terms of attributes, the representation of
concepts4 is more complex. In dependence of the (computational) characteristics
of the representation language, concepts are specified as unstructured bags of
features5, regions in a multidimensional space, or set-restrictions specified using
various kinds of description logics. As the computational concepts are models of
concepts in human minds, similarity depends on what is said (in terms of repre-
sentation) about these concepts. Context is the next big challenge for similarity
research. In most cases, meaningful notions of similarity cannot be established
without defining in respect to what similarity is measured [16, 18–20].

Similarity-based information retrieval plays an increasing role in GIScience.
Based on Tversky’s feature model [17], Rodŕıguez and Egenhofer [21] developed
the Matching Distance Similarity Measure which offers a basic context theory,
feature weights, and asymmetry, while Raubal [22] proposed geometric similar-
ity measures based on conceptual spaces. Several measures [5–8] were developed
to close the gap between ontologies specified in description logics and similar-
ity theories which had not been able to cope with the expressivity of these
languages. Other similarity theories [23, 24] have been established to determine
the similarity between spatial scenes and also investigate how to use similarity
within spatial queries [24]. The ConceptVISTA [25] ontology management and
visualization toolkit uses similarity for knowledge retrieval and organization.

2.3 Description Logics and Inference

Description logics (DL) are a family of knowledge representation languages used
to model concepts and individuals within a knowledge base. A knowledge base
consists of a TBox which contains the terminology, i.e., the concepts within
a given domain, and an ABox which stores assertions (about named individu-
als). A DL system offers services to reason about the content of a knowledge
base. Standard reasoning services include satisfiability, subsumption, and in-
stance checking. The computation of the most specific concept (MSC) for an

4 The term concept is used in this paper for the ontological representation of ge-
ographic feature types and should not be confused with the concepts in human
minds.

5 In the sense of concept characteristics, see [17].
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individual and the least common subsumer (LCS) of several concepts are so-
called non-standard reasoning services [4]. Computing the MSC of an individual
yields the least concept that the individual is an instance of. Accordingly, the
LCS of some concepts is the least concept that subsumes all of them, i.e., there
is no subconcept of the LCS which is a superconcept of all these concepts.

Computing the MSC and LCS can serve a variety of purposes. A top-down
approach for constructing knowledge bases is not always feasible, since not all
relevant concepts might be known beforehand. Instead, one could only specify
the building blocks in the TBox and then introduce typical examples as indi-
viduals in the ABox. By computing the MSC (and LSC) for these individuals,
more complex concepts can be added to the TBox. A semantics-based retrieval
approach based on computing the LCS has been proposed by Möller et al [3].

2.4 SIM-DL Similarity Theory and Implementation

While the previous sections focus on similarity in general, this section gives
an insight into a similarity theory (and its implementation) which measures
similarity between concepts specified in expressive description logics.

SIM-DL [6, 7] is an asymmetric and context-aware similarity measurement
theory used for information retrieval. It compares a search concept Cs with a set
of target concepts {Ct1 , ..., Ctm

} from an ontology (or several ontologies using
a shared top-level ontology). The concepts themselves can be specified using
various kinds of expressive description logics. The compared-to target concepts
can be either selected by hand, or derived from the so-called context of discourse
Cd [6, 19, 18], i.e., a subset of the ontology, also referred to as the domain of
application [21]. It is defined as the set of concepts which are subsumed by
the context concept Cc (Cd = {Ct|Ct v Cc}). Hence, each (named) concept
C ∈ Cd is a target concept for which the similarity sim(Cs, Ct) is computed.
Besides cutting out the set of compared concepts, Cd also influences the resulting
similarities (see [6, 7] for details). With respect to the canoeing scenario this
means that the similarity between the concepts River and Canal also depends
on whether Cc is set to Watercourse or the more general Waterbody (see figure
1). Up to now, the user has to specify the context concept manually. Information
retrieval paradigms overcoming this restriction are discussed in section 3. SIM-
DL offers an extended context model, but we focus on Cd here (see [18]).

SIM-DL compares two DL concepts in canonical form [6, 26] by measuring
the degree of overlap between their definitions. A high level of overlap indicates
a high similarity and vice versa. DL concepts are specified by applying language
constructors, such as intersection or existential quantification, to primitive con-
cepts and roles – hence forming complex concepts. Consequently, similarity is
defined as a binary and real-valued function Cs × Ct → R[0,1] providing im-
plementations for all language constructs offered by the used description logics.
Finally, the overall similarity between concepts is the normalized (and weighted)
sum of the single similarities calculated for all parts of the concept definitions.
A similarity value of 1 indicates that the compared concepts cannot be differ-
entiated, whereas 0 indicates that they are not similar at all. SIM-DL is an
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asymmetric measure, i.e., the similarity sim(Cs, Ct) is not necessarily equal to
sim(Ct, Cs). Therefore, the comparison of two concepts does not only depend on
their descriptors, but also on the direction in which both are compared. In case of
concepts composed by disjunction, SIM-DL distinguishes between two similarity
modes, the maximum similarity and the average similarity. In the first case, sim-
ilarity depends on the most similar concept that is part of the disjunction. In the
second case, similarity is defined as the average of all involved concepts. While
this distinction is a consequence of the used representation language and the
definition of similarity functions in SIM-DL [6, 7], we will discuss its importance
for information retrieval in section 3.

A single similarity value computed between two concepts hides most of the
important information. It does not answer the question whether there are more
or less similar target concepts in the examined ontology. It is not sufficient to
know that possible similarity values range from 0 to 1 as long as their distribu-
tion is unclear [7, 18]. Besides these interpretation problems, isolated comparison
puts too much stress on the concrete similarity value. It is hard to argue that
and why the result is (cognitively) plausible without other reference values [18].
Consequently, SIM-DL focuses on similarity rankings. The result of a similarity
query is an ordered list with descending similarity values. SIM-DL, supports
various result representations including font-size scaling or categorization.

The SIM-DL theory is implemented as semantic similarity service (called
WSS here). The current (beta) release6 2.2 supports subsumption reasoning and
similarity measurement up to ALCHQ, as well as MCS and LCS computation
(up to ALE). More details on the SIM-DL implementation and a similarity plug-
in to the Protégé ontology editor are given by Janowicz et al. [7]. The extensions
to the description logics communication interface DIG, necessary to integrate
the WSS within the Semantic Web are discussed by Wilkes and Janowicz [27].

3 Intensional and Extensional Retrieval

In this section, we will introduce paradigms for similarity-based information
retrieval and group them into intensional and extensional approaches (and com-
binations of both). We will motivate the need for similarity by contrasting it to
approaches purely based on subsumption reasoning. To illustrate the differences,
we define two concepts, the intended concept Ci, which represents exactly the
information the user is looking for, and the search concept Cs, which is the con-
cept actually used in the search. We make this distinction, because we assume
that in most cases the intended concept is not part of the queried ontology and
has to be approximated by the search concept. The result of a query, i.e., the
concepts or individuals returned to the user, is the better the more accurate Cs

approximates Ci. In the ideal case, Cs would be equal to Ci. If Cs
I ⊂ Ci

I , all
instances of Cs fulfill the user’s requirements. In contrast, if Cs

I ⊃ Ci
I , some

instances of Cs might not fulfill the user’s requirements. Consequently, a user

6 The release can be downloaded at http://sim-dl.sourceforge.net/.
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interface should support users in defining appropriate search concepts. We fur-
ther introduce the notions of target concepts Ct and instances It, which will be
used in our descriptions of similarity-based search paradigms.

In the following, we assume that the information the user is searching for is
represented as individuals and concepts within an ontology, and that she uses
these artifacts as the basis for her search. How this representation can be mapped
to features and feature types provided in a SDI is presented in section 4.

To illustrate the different approaches, we will use an excerpt of a hydrology
ontology (figure 1). For readability, the figure shows a simplified representa-
tion of the ontology only including its is-a relations; more expressive DL state-
ments (including concept defintions based on roles such as hasF lowV elocity or
hasOwnership) are not depicted. Note that such expressive statements can also
be used in the proposed paradigms and SIM-DL [7].

Lake

Watercourse

Reservoir

Tarn

Aqueduct Canal River

Waterbody

Sewage

SurfaceFeature

Groundwater

Ocean

Inlet

InlandFeature

SubConcept

Concept
is-a

Fig. 1. Fragment of an hydrology ontology.

Referring to the canoeing scenario, Nicole is searching for the ad-hoc category
[28] of canoe-able waterbodies (Ci). As a corresponding concept is not available
in the ontology, she needs to define a query using existing concepts. We assume
a graded structure [28, 29] for such ad-hoc categories, i.e., there are more typical
and less typical canoe-able waterbodies (on concept and instance level).

3.1 Subsumption-based Retrieval

In terms of subsumption-based retrieval and as depicted in figure 2, the following
(intensional) approaches for deriving a query, i.e., the search concept, can be
distinguished (see also [1]):

a) Search concept is a subconcept of Ci. The user can specify a particular
search concept (e.g., River) that is known to be a subconcept of Ci. Con-
sequently, while all individuals of Cs also satisfy the requirements for Ci,
many appropriate individuals will not be captured as Cs

I ⊂ Ci
I .
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b) Search concept is a superconcept of Ci. The user can specify a partic-
ular search concept (e.g., Waterbody) that is known to be a superconcept of
Ci. Consequently, while all individuals of Ci will be returned, many inappro-
priate individuals (e.g., instances of Tarn, Ocean, Sewage, or Groundwater)
will also be captured as Cs

I ⊃ Ci
I .

c) Search concept is defined by conjunction. The user can try to build
a more appropriate search concept using a conjunction of existing named
concepts (e.g., SurfaceFeature u InlandFeature uWaterbody). First, this
would require a complex user interface. Second, without a detailed knowledge
of the examined ontology, the relation between Ci and Cs remains unclear
to the user. Additionally, there is a high likelihood to get an empty result set
(because of the conjunction constructor). Thus, such an approach is more
suitable for ontology engineers than for end-users.

d) Search concept is defined by disjunction. The user can select several
concepts known to be subconcepts of Ci, hence forming Cs as disjunction
of those concepts (e.g., Canal t River t Lake t Reservoir t Inlet). While
this would require a complex user interface and is time consuming, it would
result (if the concepts are carefully selected) in a good approximation of Ci.

Fig. 2. Subsumption-based information retrieval paradigms.

3.2 Similarity-based Retrieval

In terms of similarity-based retrieval and as depicted in figure 3, the following
approaches for deriving a query can be distinguished.
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Intensional Paradigm The intensional information retrieval paradigm exclu-
sively relies on concept descriptions to reason about similarity, i.e., no individuals
are taken into account. Consequently, a concept ranking is returned to the user.

e) Prototypical search concept. The user can specify a prototypical search
concept Cs (e.g., River) such as described in approach a and define a context
concept Cc (e.g., Waterbody) in addition, which is known to be a supercon-
cept of Ci (as in b)7. All subconcepts of Cc, called target concepts Ct here,
are compared for similarity to Cs; see section 2.4. As we assume a graded
structure, a decreasing similarity to the search concept is interpreted as less
intended concept. Such a ranking can already be delivered back to the user
[18, 30]. While this approach is comparable to a combination of a and b, the
ranking is a major advantage and supports the user in generating queries
such as in case d, without requiring a detailed insight into the underlying
conceptualizations. While the selection of a prototypical concept is less dif-
ficult, finding an appropriate context concept manually is more difficult. As
each concept returned within the ranking is a subconcept of Cc, it follows
that if Cc does not capture the minimum characteristics of Ci , inappropriate
concepts may be returned (however, they would have a low position in the
ranking due to their low similarity to the search concept). Subconcepts of
Cc whose similarity is 0 (or below a pre-defined threshold) are not part of
the ranking. Each concept Ct from the ranking satisfies the more probable
the user’s requirements, the higher its similarity is to Cs.
Additionally, one could automatically generate a new search concept Csn as a
disjunction of the returned similar concepts (above a certain threshold) which
would be compareable to approach d without that the user needs to find and
select those concepts by hand. Note that one cannot think of the instances
as members of a fuzzy set with the similarity of their concepts (to Ci) as
the degree of membership. In SIM-DL (and most related measures), inter-
concept similarity cannot be directly mapped to inter-instance similarity
(i.e., a similarity sim(River, Canal) of 0.76 does not imply that the similarity
between all rivers to all canals is 0.76).

Extensional Paradigm The extensional information retrieval paradigm is a
query-by-example, and hence relies exclusively on individuals to reason about
similarity. A concept (the LCS) computed from the set of examples, called ref-
erence individuals here, is used to pre-select the compared-to target individuals.
Consequently, the user’s query is answered by returning ranked individuals.

f) Reference individuals (for individual similarity). The user can spec-
ify a set of reference individuals {Ir1 , ..., Irn} (e.g., particular rivers and
lakes). The retrieval of target individuals can then be subdivided into three
steps. First, the most specific concept MSCri

for each reference individual

7 Approach e can also be modified to take concepts formed by disjunction or conjunc-
tion (such as in c and d, repsectively) into account.
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is determined. The second step is the computation of the least common sub-
sumer for {MSCr1 , ...,MSCrn

}. The LCS comprises those characteristics
that are common to all MSCs, and is therefore used as the context con-
cept Cc

8. Finally, retrieving the instances of Cc yields the target individuals
{It1 , ..., Itm

} (particular rivers, lakes, reservoirs, canals, etc.). Since all target
individuals instantiate Cc, they share the same characteristics common to all
reference individuals. Now, similarity is used to account for those characteris-
tics that differ among the reference individuals. For example, a characteristic
that is common to {Ir1 , ..., Irn−1}, but does not apply to Irn , is not captured
by Cc, and is therefore no requirement for a target individual. Nevertheless,
a target individual that shares that characteristic with n− 1 reference indi-
viduals might be more relevant than target individuals lacking that property.
The overall relevance of a target individual can be determined by comparing
it to each of the reference individuals and combining (e.g., averaging) the
resulting similarities. The result returned to the user is a ranking of target
individuals illustrating their similarity to the reference individuals.
Recapitulating, the reference individuals are an extensional way to approx-
imate Ci, and at the same time their common characteristics are used as
context concept. The set of target individuals might capture inappropriate
individuals as {Ir1 , ..., Irn} ⊂ Ci

I ⊆ {It|It ∈ Cc and It /∈ {Ir1 , ..., Irn}}
holds. Due to the similarity ranking of target individuals, this drawback is
compensated. The higher a target individual is ranked the more likely it is
within Ci

I . In contrast to paradigm e, one could also think of the returned
ranking as a fuzzy set by replacing the crisp membership (or instance-of)
relation with its counterpart from fuzzy sets theory9. Then, the degree of
membership of a certain (target) individual is given by its similarity value.

Combinations of the Intensional and Extensional Paradigm A combi-
nation of the intensional and extensional paradigms reduces the difficulties in
selecting appropriate search and context concepts by allowing for the selection
of reference individuals (however, both paradigms return (similar) concepts).

g) Prototypical search concept and reference individuals. The user can
specify a search concept (e.g., River) and a set of reference individuals
(e.g., waterbodies Nicole had canoed before). This is a combination of the
paradigms e and f, where the search concept is used for comparison and
the least common subsumer of the reference individuals is used as context
concept to define the context of discourse. The result is a concept ranking

8 Consider the following example: MSCr1 ≡ River u ∃hasF lowV elocity.V elocity u
∃hasOwnership.Public and MSCr2 ≡ Lakeu∃hasOwnership.Public results in the
LCS Cc ≡ SurfaceFeatureuWaterbodyuInlandFeatureu∃hasOwnership.Public.
The restriction hasOwnership.Public is common to both MSCs, and although Lake
and River do not match, their common superconcepts SurfaceFeature, Waterbody,
and InlandFeature are considered by the LCS.

9 See Cross and Sudkamp [31] for an overview on fuzzy sets and similarity.
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Fig. 3. Similarity-based information retrieval paradigms.

such as in e. The advantage is that the user does not need to specify the
context concept manually. However, the distinction between search concept
and reference individuals may be difficult to explain to the user.

h) Reference individuals (for concept similarity). The user can specify a
set of reference individuals. Their LCS is computed and acts as context con-
cept. All resulting target concepts (Ctj v Cc) are compared to the concepts
(Cri

) the reference individuals are instances of. For example, if one refer-
ence instance is a Lake, one a River and a third a Canal, the LCS would
be SurfaceFeatureuWaterbody u InlandFeature and the target concepts
all concepts from our ontology fragment except Ocean, Inlet, Groundwater
and Sewage. Each target concept is compared to each Cr (Lake, Canal,
and River in our example); note that each Cr is a subconcept of Cc, and
therefore a target concept itself. This raises the question of how the resulting
ranking should be generated. The similarity modes introduced for SIM-DL
allow for two different solutions. Out of the user’s reference individuals a
search concept can be defined as disjunction of the respective reference con-
cepts. Next, either the average or maximum similarity mode can be used to
compute the similarity sim(Cs, Ctj

). In the first case, each Ct is compared
to all Cr and the average of its similarity values is used for the ranking.
In the second case, the ranking depends on the highest similarity value to
one of the Cr. With respect to our example and the average mode, River,
Canal, and IrrigationCanal would occupy a higher position in the ranking,
followed by Lake (see figure 5). This is due to the two watercourses selected
as reference individuals.

As in g, this approach is also a combination of e and f, but does not require
the manual definition of the search concept. The user only needs to specify
reference individuals while Cs and Cc are computed automatically.
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3.3 Summary

In contrast to the subsumption-based approaches, similarity supports the user
in phrasing queries and delivers a ranking to help the user in judging how well
returned individuals or concepts fit her requirements. In the cases a and d, it is
guaranteed that all returned concepts are subconcepts of the intended concepts,
i.e., fulfill the user’s requirements – this is not the case for similarity-based
retrieval in general. To overcome this difficulty the context concept is introduced
to capture the minimal characteristics and only its subconcepts are compared for
similarity. The approaches e–h offer different solutions on how to reduce the effort
of phrasing the search and the context concept, and automate these steps. The
question which of the proposed paradigms fits best depends on the application
area. In general, the focus of similarity is more to facilitate the navigation and
browsing through results and hence to improve interaction with the user. Section
4 introduces two prototypical user Web interfaces to demonstrate how similarity-
based information retrieval can be integrated into a SDI.

4 Integration into SDI

This section presents two conceptual designs for Web user interfaces implement-
ing the similarity-based retrieval paradigms e and h for the canoeing scenario10.
An architecture and workflow for the integration of SIM-DL into an SDI is dis-
cussed and the requirements for such integration are pointed out.

4.1 Similarity-enabled User Interfaces

Figure 4 displays a user interface implementing paradigm e. According to the
canoeing scenario and using this interface, Nicole searches for features of any
name that are of type River (Cs) and located near Park City, Utah (1 ).

The context concept Cc is defined as LCS of all feature types which have
features in the map extent (and is hence set to Waterbody with respect to our
ontology fragment). As result, a tag cloud showing alternative (similar) feature
types is returned (2 ). After clicking on the search button, features within the
map extent of type River are displayed (3 ). The tag cloud can now be used to
browse for features that have a different but similar type than River.

Figure 5 shows a user interface implementing paradigm h. Here, Nicole first
specifies known reference features (from Canada) and the map extent (Utah)
(1 ). After clicking on the search button, a tag cloud of feature types (Ctj

) that
are similar to the feature types (Cri) of the reference features (Iri) is displayed
(2 ). The results are shown for the most similar feature type which is Canal, and
can be used to display features of other types such as River (3 ).
10 Note that implementations for both paradigms exist/are under way for different sce-

narios: paradigm e has been implemented within a similarity-aware gazetteer inter-
face [7]; paradigm f is currently being implemented for a similarity-aware climbing
route recommendation service. See http://sim-dl.sourceforge.net/applications/ for
details and source codes.
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Fig. 4. A conceptual design of a user Web interface illustrating approach e.

Fig. 5. A conceptual design for a user Web interface illustrating approach h.

4.2 SDI Architecture and Workflow

In figure 6, an SDI architecture for implementing similarity-based information
retrieval following paradigms e, f, or h is sketched. It assumes a thematic por-
tal as a client application, e.g., a portal serving hydrology information, with a
user interface resembling the ones presented in the previous section. The other
components in the architecture are standard WMS and WFS instances as well
as a catalogue service including a feature type catalogue (CS-W & FTC) and
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the WSS. We assume that both services as well as the client have access to and
use the same ontology. We do not consider here, how the access to the ontology
could be enabled through a service interface (as proposed, e.g., in [32]).

WFSWMS

CS-W & 
FTCdisplay map (f,h) or

concepts (e) for selection

GetMap with SLD

GetFeature (e,h)

User

select reference
features (f,h)  or

search concept (e) 

call similarity service with reference
individuals (f,h) or search concept (e) 

transform reference features
from GML to DL (f,h)

compute
similarity

return similar individuals (f)
or concepts (e,h) (ranked) 

find feature types 
for selected concepts
and WFS instances
offering them (e,h)

select individuals (f)
or concepts (e,h)

Client
Application

transform selected
individuals from 
DL to GML (f)

based on

based on

Ontology
based on

GetFeature (f,h)

WSS

Fig. 6. Architecture and workflow for integrating similarity-based information retrieval
into an SDI.

The figure shows the workflow for all three paradigms. Until the similarity
is computed, the workflow is the same for approaches f and h, where reference
individuals, rather than reference concepts as in e, have to be specified. After this
step, approaches e and h share the same workflow as the similarity computation
yields concepts rather than individuals as in approach f.

In the first step, the client application displays a map using different feature
types from the hydrology domain (f, h)11 or a list of possible search concepts from
the ontology (approach e). The user can then graphically select one or several
features in the map (f, h) or a concept from the ontology (2 ). Approaches f and h
require that the selected features are retrieved from the WFS (3 ) and translated
from their GML representation into DL individuals (4 ). The DL individuals
(f, h) or concepts (e) that are now available in the client are sent to the WSS
(5 ), which computes the similarity using the respective approach (6 ). This yields
a ranked list of similar individuals (f ) or concepts (e, h) that is displayed in the

11 In an SDI architecture, this will be done using a WMS request, possibly using a
styled layer descriptor (SLD) document with references to remote WFS instances.
These steps are omitted in figure 6 for readability.
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client (7 ). The user can then select one or several of the presented individuals (f )
or one of the presented concepts (e, h) (8 ). In approach f, the selected individuals
are translated back into GML, in approaches e and h, the CS-W is queried for
WFS instances offering feature types annotated with the selected concepts (9 ).
Based on the GML or WFS instances, the client builds a SLD document and
calls a WMS GetMap operation (10 ). The map is created from the GML directly
(f ) or based on a GetFeature requests to the WFS instances listed in the SLD
(e, h) (11).

4.3 The Missing Pieces

The architecture and workflow sketched in the previous section puts a number
of requirements on the used SDI components, in particular the CS-W and WFS.

Catalogue Service The catalogue service needs to store metadata about three
types of resources: (1) services, (2) data, and (3) feature types, as well as the
relationships between them. The ebRIM catalogue profile for the CS-W allows
storing this information in one registry as well as queries combining them. The
ebRIM basic extension package describes the relationship between services and
datasets through the OperatesOn Association defined in ISO 19119 [33]. In [14],
an ebRIM extension package is described that allows the storage of feature cata-
logue (as defined in ISO 19110 [13]) metadata in an ebRIM catalogue. However,
there is no association between the feature types and services and/or data. Such
an association would be required in order to find WFS instances that provide a
specific feature type.

The model defined in ISO 19110 only includes an optional definition attribute
of type string to describe a feature type. In order to do similarity-based search,
a link needs to be established to a concept that annotates the feature type.
This link should be stored in the (feature) catalogue rather than the ontology
in order to avoid having to update the ontology every time a new feature type
is registered in the feature catalogue.

Web Feature Service For the intensional paradigm, the WFS does not have
to be changed as the approach works at the feature type (rather than the feature
instance) level and the concepts in the ontology only annotate features (rather
than also their attributes and/or operations). Thus, once one or several feature
types have been discovered, a normal GetFeature request can be sent using the
selected feature type (cf. steps 3 and 11 in figure 6).

For the extensional paradigm, features need to be translated into ontology
individuals and vice versa (cf. steps 4 and 9). This could be done following the
approach described in [34], i.e., by simply mapping the GML properties to DL
properties. If the approach is to be successful, this mapping should, wherever
possible, use DL roles already existing in the ontology. Otherwise the similarity
to existing concepts will be very low. The mapping should preferably be defined
by the data provider, or – if no mapping is yet available – by the requester. How
to support the creation of such mappings is an open research question.
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5 Conclusions and Further Work

This paper investigates paradigms for similarity-based information retrieval,
presents prototypical Web user interfaces applying these paradigms, and dis-
cusses their integration into SDI as well as remaining difficulties. While the
intensional paradigm e has been implemented within SIM-DL and used for a
gazetteer research scenario before [7, 35], the integration of the new extensional
paradigm f within SIM-DL is under development. Further research should espe-
cially focus on approach h. It allows to compute inter-concept similarity without
requiring the user to define the search and context concept manually. In many
application areas, selecting reference individuals, i.e., examples, may be more
intuitive both in terms of using the Web user interface as well as in interpret-
ing the results. In several cases, such as the gazetteer scenario [7, 35] and to a
certain degree also the SDI integration discussed here, geographic features are
not available as instances within the ontology; hence paradigm h can be used
instead of f (and e) to deliver similar feature types. While the question which of
the presented search paradigms (also including those purely based on subsump-
tion reasoning) fits best depends on the application area, it would be fruitful
to analyze whether certain scenarios abet a particular paradigm. This could be
done by human participants tests, but also by classifying the scenarios. For in-
stance, the benefit of similarity lies in browsing through potential results and
reducing the complexity of user interfaces [35], while scenarios which require
guaranteed results (e.g., in emergency scenarios) may put more focus on sub-
sumption reasoning. Additionally, the list of subsumption and similarity-based
paradigms presented in this paper is not exclusive. On may also think of using
logical negation to define the search concept. As pointed out by Nedas and Egen-
hofer [24], the interpretation of such queries is not trivial in terms of a similarity
ranking.

Further research should also focus on how to display the retrieved features
and types to the user. While SIM-DL supports value rankings, tag clouds, and
categories so far [18], other visualization and interaction methods have to be
investigated. For instance (for paradigm f), one may think of sliders to select
the similarity threshold value above which features should be displaying on the
map.
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