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Abstract

Geo-ontologies play an important role in fostering the publication, retrieval, reuse, and integration
of geographic data within and across domains. The status quo of geo-ontology engineering often
follows a centralized top-down approach, namely a group of domain experts collaboratively formalizing
key concepts and their relationships. On the one hand, such an approach makes use of the invaluable
knowledge and experience of subject matter experts and captures their perception of the world.
On the other hand, however, it can introduce biases and ontological commitments that do not well
correspond to the data that will be semantically lifted using these ontologies. In this work, we propose
a data-driven method to calculate a Discrepancy Indez in order to identify and quantify the potential
modeling biases in current geo-ontologies. In other words, instead of trying to measure quality, we
determine how much the ontology differs from what would be expected when looking at the data
alone.
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1 Introduction

Due to the diverse and eclectic nature of geographic information, geographic data usually comes from
different sources, in different formats, and are conceptualized from different perspectives. These hetero-
geneities in terms of provenance and standards create a barrier for integrating data to perform more
comprehensive analysis. Geo-ontologies provide a promising way to alleviate this long-standing issue by
enabling a flexible integration of geographic information based on semantics, i.e., regardless of represen-
tational choices and syntax.

However, the common ways in which geo-ontologies are developed top-down by a team of knowledge
engineers and domain experts carry the risk of generating biased or unsuitable geo-ontologies (Hu and
Janowicz, 2016). To give a concrete example, in the current version of DBpedia’s ontology (DBpedia
2015-10), the class Canal is classified as a sibling class of River, and both are defined as subclasses of
Stream. This seems to be a rational classification at first glance since canals are usually channels of
water. However, Stream is a subclass of BodyOfWater and BodyOfWater is a subclass of NaturalPlace.
Due to the transitivity of the rdfs:subClassOf relationship, canals become natural places. However, this
seems like an odd modeling choice as canals are defined as “an artificial waterway constructed to allow
the passage of boats or ships inland or to convey water for irrigation” according to the Oxford dictionary.
Words such as “artificial” and “constructed” make canals man-made features rather than natural place.
This example indicates that top-down geo-ontologies may suffer from the issues such as modeling biases,
oversights, and ontological commitments that do not well represent the real data needs.

Scrutinizing the geo-ontologies and making revisions manually on a regular basis are common solutions
to such problems. But such methods are usually labor-intensive and create a gap between the geo-ontology
and its corresponding Linked Dataset. In this research, we introduce initial results on a Discrepancy
Index that helps geo-ontology engineers by detecting and quantifying potential issues using a series of
data mining steps.

2 Proposed Method

Our approach consists of two parallel threads. The first thread comes from Linked Datasets that are
transformed from unstructured data, such as Wikipedia pages. This thread focuses on the bottom-up



part. The second thread originates from the top-down geo-ontologies which are constructed manually by
expert with their domain knowledge.

From a Linked Dataset, we select instances and properties concerning the specific classes in the top-
down ontology. These instances and properties then act as input for our data-driven approaches. During
the feature extraction, we focus on properties in each class. Properties in a Linked Dataset are analogous
to attributes of different place types. The rationale is that similar place types share similar attributes
while distinct place types have distinct attributes. For example, the place types City and Town are similar
and they have similar properties such as populationOf and totalAreaOf. However, City and Mountain
are very different from each other because a mountain can have a peak whereas a city usually does not.
Based on this train of thought, we build a feature set that shows the relative frequency of each property
in each class.

In pursuance of comparing the results of our data-driven approach, we also consider different variations
of the feature set. We take into account four variables in our feature selection. They are filler, specificity,
literal and wuniformity (Table 1). All of them are boolean variables. The variable filler decides whether
we use {property, object type} pairs or property alone to count the frequency. The variable specificity
takes into consideration the hierarchical structure of object types. The variable literal acknowledges the
fact that, in Resource Description Framework (RDF), object and literal have different typing schemes,
namely object type and data type. The variable uniformity considers the cases in which the literal of the
same property has different data types because the original Wikipedia page does not define a uniform
data type for each infobox entry. For example, a city may have a property population, but the literal
value for this property may be of type integer, double or even string. In a nutshell, filler and literal
decide whether we incorporate object type and literal type into our feature extraction; specificity and
uniformity deals with the granularity and accuracy of object type and data type respectively.

Table 1: Definition for four variables

True False
Filler Include object types Do not include object types
Specificity | Include only the most specific object types Include all object types
Literal Include literal types Do not include literal types
Uniformity Unify literal types Do not unify literal types

Considering all the variables listed here, we have seven feature sets. This whole process of feature
selection can be viewed as a decision making process, visualized in a decision tree shown in Figure 1.
We make a boolean decision on one of the four variables described above at each internal node. Each
internal node branches into two sub-nodes which are the outcomes of the two decisions based on each
of the four variables in our feature selection process. The seven leaf nodes are the final outcomes of the
decision tree, which are also the seven feature sets.
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Figure 1: The tree structure of feature sets

In order to avoid the curse of dimensionality, we transform our raw feature space into a lower dimen-
sional space using Multidimensional Scaling. We then use hierarchical clustering to obtain the hierarchies
derived from the selected feature sets. In the next step, information content-based semantic similarity
measures (Jiang and Conrath, 1997; Sénchez et al., 2011) are implemented to compute the pairwise
similarity between each pair of classes in the derived as well as the original ontology hierarchy. The
Mantel test (Mantel, 1967) is implemented to select the best representing feature set based on the cor-
relation coefficient and p-value. The result shows that Feature Set E performs the best. In the end, we



use the semantic similarity results from the best feature set to calculate the Discrepancy Index Matrix
IndexMatriz = SimMatritoriging — STMMatriteriveqd- Individual Discrepancy Index can be found in
this matrix.

The value range for the Discrepancy Index is [—1,1]. If IndexMatrixz(i,7) > 0, it implies that class
and j are less similar in the derived hierarchy; whereas if IndexMatriz(i, j) < 0, it tells us that class ¢ and
Jj are more similar in the derived geo-ontology. The value of |[IndexMatrixz(i, j)| gives us the information
about the extent to which the similarity in two hierarchies differ from each other. This Discrepancy Index
is useful in assisting geo-ontology engineers to refine and further develop the geo-ontology in that it gives
guidance on correcting the potential modeling biases or misclassifications.

3 Case Study: Are Canals Natural Places?

Among the various different types of geo-ontologies, we selected the DBpedia ontology for our case study.
Previously, we discussed that Canal should not be classified as the subclass of NaturalPlace based on its
definition. To further verify this, we can check if the DBpedia Linked Dataset supports our observation.
Browsing through the DBpedia page of Panama Canal, we found properties such as dbo:principal Engineer,
dbp:dateUse and dbp:company (see Figure 2). Intuitively, it is unreasonable for an instance of NaturalPlace
to have principal engineers, to have the date of first use, and to be originally owned by a company. We
can apply the Discrepancy Index to see if our approach can detect such a case.
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Figure 2: Panama Canal in DBpedia

We approach this by comparing the semantic similarity between Canal and its sibling classes, in this
case, River. We would assume that since Canal and River are sibling classes, they are semantically
similar to each other or at least more similar to each other than to classes in other branches of the place
type hierarchy. We first plot the bar graphs for Canal and River. The bar chart uses information from
the feature space after dimensionality reduction. The reasons we use the transformed feature space are
two-fold. First, the original feature space contains numerous features which are hard to visualize and
plot in a graph. Moreover, the original feature space is very sparse, making it difficult to analyze the
results in a plotted graph. Second, some of the features are dependent on each other, making some of the
information redundant and unreliable. The transformed feature space only contains 63 features and all
of the features are independent from each other. Figure 3 and Figure 4 show the bar chart of these two
classes. The x axis represents the statistical features for each class in the same order while the y axis is
the value for each feature. From here, we can tell that Canal has a distinct pattern from River. However,
the charts alone cannot quantify the difference between these classes. Moreover, it is also impossible to
obtain the same kind of graphs using the original hierarchy in the ontology. Thus, these charts alone
cannot hint at the direction of required geo-ontology refinements and the extent of the modeling biases.

Therefore, we can use the proposed Discrepancy Index to help us. After looking up the similarity
matrices for the original hierarchy and the derived hierarchy, we find that the similarity between Canal
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Figure 3: Feature values for Canal after MDS Figure 4: Feature vlaues for River after MDS

and River is 0.84 and 0.23 respectively. The Discrepancy Index for (Canal, River) is 0.61. This index
implies that Canal is less similar to River in the derived hierarchy and leads to further investigation,
which in this case is the result of modeling bias. This result corresponds to our observation in the DBpedia
geo-ontology.

4 Conclusion and Future Work

Current geo-ontology engineering procedures often heavily depend on the knowledge of domain experts
and a top-down style of engineering. The potential pitfall to this routine is that the resulting geo-
ontologies may be biased and not representative of the data that will be semantically lifted using these
ontologies. In this initial research we propose a data-driven approach that integrates geo-ontologies and
Linked Dataset during the dynamic course of geo-ontology engineering and assist engineers in identifying
and quantifying potential geo-ontology modeling bias via a Discrepancy Index. The initial case study
suggests that the results returned by our method correspond to our observation, hinting at the usefulness
of the Discrepancy Index.

This work can be extended in several aspects. First, this initial method can be extended into a system-
atic framework that can be applied to a variety of geo-ontologies and to guide engineers in understanding
differences and similarities in their conceptualizations Janowicz et al. (2008) . Second, our experiment
so far focuses on one particular ontology and dataset from DBpedia. With a wide range of availability of
Linked Data and ontologies on the Web, we can test our approach using different data sources. Moreover,
candidate solutions to the bias detected by the data-driven method can be developed in future work.
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