
Revisiting the Representation of and Need for Raw Geometries
on the Linked Data Web

Blake Regalia
blake@geog.ucsb.edu

STKO Lab, University of California,
Santa Barbara, USA

Krzysztof Janowicz
jano@geog.ucsb.edu

STKO Lab, University of California,
Santa Barbara, USA

Grant McKenzie
gmck@umd.edu

Department of Geographical Sciences,
University of Maryland, USA

ABSTRACT
Geospatial data on the Semantic Web historically stems from using
point geometries to represent the geographic locations of places. As
the practice evolved in the Semantic Web community, a demand for
more complex geometries and geospatial query capabilities came
about as a consequence of integrating traditional GIS and geo-data
into the Linked Data cloud. However, recent projects have revealed
that, in practice, these established techniques have major shortcom-
ings that limit their storage, transmission, and query potential. In
this position paper, we examine these shortcomings, propose to
treat geometries similar to how other binary data are stored and
referenced on the Semantic Web, namely by representing them as
resources via URIs instead of RDF literals, and demonstrate the
utility of precomputing topological relations rather than comput-
ing them on-demand by arguing that end users are most o�en
interested in topology and not raw geometries.

1 INTRODUCTION
Looking back to the origins of publishing geospatial data on the
SemanticWeb, theW3C SemanticWeb Interest Group (SWIG) intro-
duced the Basic Geo Vocabulary1 circa 2003 in order to “explore the
possibilities of representing mapping/location data in RDF.” Initially,
this vocabulary was considered good enough for annotating web
documents and XML resources with basic location metadata (e.g.,
<pos:lat>51.46</pos:lat> <pos:long>-0.45</pos:long>2). It even
brought about an immediate linking of resources via services such
as GeoURL3, which allowed users to �nd URLs by their proximity to
a given location such as “your neighbor’s blog” or “restaurants near
you”. �e establishment and subsequent widespread usage of such
a W3C vocabulary made it an obvious choice for early contributors
of geospatial data on the Semantic Web. Among the �rst major
contributors were gaze�eers, such as GeoNames, who housed spa-
tial databases comprised entirely of latitude/longitude coordinate
pairs of geocoded places. To this extent, the Basic Geo Vocabulary
was still su�cient. However, it soon became clear to the growing
Semantic Web community that a more comprehensive geospatial
vocabulary was needed in order to deal with geometries beyond
1h�ps://www.w3.org/2003/01/geo/
2h�p://swig.planetrdf.com/2003/01/10/2003-01-10.html#1042200521.031970
3h�ps://goo.gl/5ho0Pv

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
LDOW’17, Perth, Australia
© 2016 Copyright held by the owner/author(s). 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

single points, as well as a general support for coordinate reference
systems, and most importantly the distinction between the entity
on the surface of the Earth and the many possible geometries one
can use to represent it given various contexts, granularities, use
cases, and so forth. In fact, the authors of the Basic Geo Vocabulary
explicitly acknowledged that it “does not a�empt to address many
of the issues covered in the professional GIS world”.1

Between 2006 and 2011, prior to the standardization of OGC’s
GeoSPARQL[10], several groups set out to establish a successor
geospatial vocabulary that would support the serialization of var-
ious geometry types as RDF along with the means to reason and
query on those geometries. A community known as NeoGeo dra�ed
a vocabulary4 that was guided by the idea to convert entire data
structures (down to primitive datatypes) into RDF. A serialization
of a polygon using NeoGeo is shown in Listing 1.
:polygon rdf:type ngeo:Polygon ;

ngeo:exterior [rdf:type ngeo:LinearRing ;
ngeo:posList (

[geo:lat -29; geo:long 16]
[geo:lat -28; geo:long 33] ...)] ;

ngeo:interior [...]

Listing 1Using theNeoGeoVocabulary to serialize the geometry of a polygon.

While such a serialization certainly follows the Linked Data par-
adigm’s call for raw data, it also drew criticisms for its excessive
creation of blank nodes[1] and the burdens of storing and querying
complex geometries with such a high degree of geometric decom-
position. Furthermore, separating the latitude and longitude values
could introduce ambiguity as to which two values belonged to a
coordinate pair and more importantly, had no apparent query use
case besides searching for points within a given bounding box.
NeoGeo, and with it many other approaches proposed for di�er-
ent kinds of (non-geographic) data, raised the interesting question
of what to triplify and what to consider a leaf node. On the one
hand, only a direct RDF representation allows for reasoning, direct
linkage, reuse of raw data, and so on. On the other hand, the same
tripli�ed data is o�en di�cult or impossible to process by domain
applications such as GIS, it is not e�cient in terms of storage nor
processing, and is o�en not easily read and understood by humans.

One solution that addressed these criticisms for geographic
data was to store the entire geometry in a single RDF literal, thus
eliminating any issues brought on by embedding complex struc-
tures as RDF. Serialized geographic formats such as Geographic
Markup Language (GML) and Well-Known Text (WKT) o�ered ac-
cessible means to encode geometries in a human-readable form.
GeoSPARQL [10] adopted these two formats in its �rst iteration
of the standard which was approved in 2012. GeoSPARQL was
a break-through for storing serialized geometry data within RDF
triples, supporting coordinate reference systems, maintaining the
4h�p://geovocab.org/doc/neogeo.html

https://www.w3.org/2003/01/geo/
http://swig.planetrdf.com/2003/01/10/2003-01-10.html#1042200521.031970
https://goo.gl/5ho0Pv
http://geovocab.org/doc/neogeo.html

LDOW’17, April 2017, Perth, Australia Blake Regalia, Krzysztof Janowicz, and Grant McKenzie

Figure 1 Multipart polygon representing the Lake of the Woods.

distinction between entities and their geometric representation,
and enabling geospatial queries on linked geographic data. How-
ever, feedback from implementors and data publishers has revealed
latent problems with scaling, e.g., challenges associated with the
storage and transmission of large WKT strings, and timely execu-
tion of SPARQL queries that make use of geospatial functions. Some
projects sidestepped these issues by storing multiple versions of a
feature’s geometry at di�erent levels of simpli�cation, sacri�cing
storage space for speed while not compromising on data quality.

Serializing geometries as WKT literals may be suitable in some
cases but prohibitive in others. Consider, for example, the notable
Lake of the Woods body of water (Fig. 1) and its nearly 15,000
islands. A geometric representation of the lake consists of 4,484
rings formed by 487,505 nodes. �e resulting WKT literal5 is 11
MB large, not human-readable, and is too cumbersome to be used
directly as input for reasoning, e.g., to compute topological relations.
�ese problems become apparent when dealing with a multitude
of complex geometries[9], such as the USGS Digital Line Graph
data6. While the Lake of the Woods might seem like an extreme
example, the reality is that even WKT strings of 11 KB (the average
size of OpenStreetMap geometries for the United States) far exceed
the capacity for human-readability. By comparison, while it might
make sense to store a single color value as a hexadecimal color code
in an RDF literal, it does not follow that pixel data for an entire
image should also be encoded as a literal.

In light of these issues and the responses they have precipitated,
we reconsider the techniques set forth by GeoSPARQL in favor of
two proposed alternatives that are driven by practicality. Speci�-
cally, we argue that (1) serialized geometry data beyond points and
bounding boxes do not need to be expressed in RDF and that (2)
geospatial queries on Linked Data will bene�t from storing pre-
computed topological relations instead of, or in addition to, raw
geometries. We will refer to our approach here as ‘AGO’.

5Available at: h�p://stko-testing.geog.ucsb.edu/blake/resource/lake-of-the-woods.txt
6h�ps://lta.cr.usgs.gov/DLGs

Figure 2 Screenshot of our web interface dereferencing a geometry’s URI.

2 REPRESENTING GEOMETRIES WITH URIS
In our approach, rather than storing geometry as RDF literals in
the triples of blank nodes (as is common with GeoSPARQL), we
opt to use Uniform Resource Identi�ers (URIs) to represent the
geometry as a resource. �is approach is compatible with existing
GeoSPARQL datasets and implementations because it still allows
for statements about a geometry (e.g., geosparql:asWKT), however
it relieves the triplestore from having to bear responsibility for
the entire geographic dataset. Instead, geometry data can persist
elsewhere, such as within a local geodatabase or on a remote server.

�e broader line of reasoning we emphasize here is that given the
complexity of high-resolution geometries used by production-level
Geographic Information Systems and many of the most prominent
science datasets, e.g., provided by USGS National Map, raw geome-
tries hold li�le value in a human-readable medium when compared
to their more e�cient binary formats. Without an application layer
to render them on a map or perform some geospatial analysis, the
only discernible information that complex geometries (e.g., WKT
strings) can convey to humans are the types of features they contain
(e.g., point, linestring, or polygon). �erefore, we believe geometry
data should be treated similarly to how other binary data is stored
and referenced on the Semantic Web, namely via URIs. Just as with
other binary resources on the web, we envision the client having
the option to download geometry data by dereferencing their URIs.
Coupled with content negotiation, such an approach allows clients
to fetch geometry in a format that suits their needs (in addition to
being able to negotiate for its RDF). To give an example, we im-
plemented an HTTP server that supports various ‘Accept’ header
media (MIME) types for geometries as shown in Table 1.

When dereferencing a geometry’s URI in a web browser (MIME
type text/html), we designed a simple interface to display the ge-
ometry on a map and provide access to the actual data by triggering
one of the other four supported content-types as shown in Fig. 2.

We mint each URI with human-readable metadata about the ge-
ometry it represents; this includes the geometry type, its unique ID,
and the bounding box coordinates of the geometry (in the WGS84
coordinate reference system). For point geometries, this bounding
boxmetadata is reduced to just the single coordinate pair, e�ectively
encoding the entire geometry within the text of the URI. While
such practice is not (yet) standardized, it enables clients to �lter
geometries by type and to begin building a spatial index if their
application supports it. In our experiment, we encoded URIs for 2.2

http://stko-testing.geog.ucsb.edu/blake/resource/lake-of-the-woods.txt
https://lta.cr.usgs.gov/DLGs

Revisiting the Representation of and Need for Raw Geometries on the Linked Data Web LDOW’17, April 2017, Perth, Australia

curl "http://ex.co/geometry/polygon/12345" -H "Accept: $MIME TYPE"

MIME Type Description Returns
text/html Web interface <!DOCTYPE html><html lang="en">...

text/plain Well-Known Text POLYGON((113.1016 -38.062 ...))

application/gml+xml GML <gml:Polygon><gml:Exterior>...

application/json GeoJSON {"type":"Polygon","coordinates":...}

application/octet-stream Well-Known Binary 01 06 00 00 20 E6 10 00 00 01...

Table 1 Five MIME types and their associated return values that our experimental server so�ware supports when dereferencing a geometry’s URI.

million geometries from the USGS Geographic Names Information
System (GNIS) using this scheme (Listing 2).

base uri geometry ID
http://ex.co/geometry/polygon/12345#113.05281,-38.11945/153.30671,-11.15957

geometry type WGS84 bounding box coordinates

Listing 2 Encoding scheme used to mint URIs representing a geometry.

When the GeoSPARQL speci�cation succeeded NeoGeo’s vocab-
ulary and related approaches, a few resourceful concepts were un-
fortunately sacri�ced in the process that were among the strengths
of NeoGeo. Most notably, reusing existing geometries to create so-
called ‘Composite Geometries’ was a promising way to derive new
features while tracking the provenance of its constituents – some-
thing that is not practical to achieve with RDF literals and that we
would therefore consider a shortcoming of the current GeoSPARQL
speci�cation. �is idea is expanded even further when consider-
ing geometric operations such as creating a union, intersection,
di�erence, bu�er, convex hull, and so forth. With the use of URIs,
however, the option to reuse geometries is feasible once again. For
example, one could describe the geometry of a university’s spatial
extent by the union of the geometries for its constituent features
such as its campus, sports stadium, and o�-campus housing areas.

To summarize, we compare the strengths and weaknesses of
three di�erent approaches to storing and querying geospatial in-
formation as Linked Data for GeoSPARQL, NeoGeo, and our AGO
proposal in Table 2.

While the last row in Table 2 indicates a weakness of using
URIs to represent geometries, this is only from the perspective of
an inactive client. If one considers the broader perspective of an
application, this weakness is replaced by a strength. For instance,
rather than downloading the geometry in a prescribed format, the
client application can strategically schedule a bulk download of
just the geometries it wants (e.g., of a certain type or within a given
bounding box) in either a compact binary format (e.g., Well-Known
Binary) or a ready-on-arrival format (e.g., GeoJSON for JavaScript
applications). �e ability to download multiple geometries in a
single HTTP request certainly has its advantages, and we concede
that coming up with an HTTP-friendly solution for doing this with
geometry resource URIs needs discussion.

3 WHAT ABOUT TOPOLOGY?
With the advent of GeoSPARQL and other means to perform spatial
and spatiotemporal queries [7] over Linked Data, storing complex
geometries as RDF is becoming more popular. �e LinkedGeoData
project [11], for example, provides di�erent geometry types, such
as polygons, extracted from OpenStreetMap. �ese geometries
can be utilized for two types of queries, those that involve or infer

topological relations and those that are non-topological such as
distances, bu�ers, and convex hulls.

Replacing the simple geometries that dominate knowledge
graphs and search engines today with more complex geometries
will be of limited use (beyond applications such as routing and vi-
sualization). Instead, we believe that knowledge graphs and Linked
Data more concretely will see a greater bene�t from storing topo-
logical relations. One could argue that such topological relations
can be computed using geometries but not the other way around.
While this is true in an abstract mathematical sense, it does not
hold for actual data. In fact, topological relations between places
cannot be easily computed based on geometry alone. While there
are many reasons for this [6, 12], our argumentation will focus on
the role of domain knowledge, vagueness, and uncertainty [2] and
not on computational issues.

3.1 Challenges
To understand how topology is handled in GIS, it is important to
note that data collection, modeling, and pre-processing take about
80% of the time budget of a typical GIS project. When data are
loaded into a GIS, the analyst uses a sequence of toolboxes to �rst
correct common errors such as so-called sliver polygons and then
applies domain-speci�c topological consistency rules.7 Neither the
pre-processing steps nor the domain-speci�c topological rules are
available when computing topological relations on-demand using
GeoSPARQL over Linked Data. In addition, the datasets used for
any given GIS task that involves topological relations are orders of
magnitude smaller than querying such relations over Linked Data
hubs such as DBpedia, i.e., they involve dozens of hundreds of poly-
gons or linestrings but not hundreds of thousands. �eries such
as �nding cities along the Mississippi River or counties along state
borders cannot be e�ectively answered over Linked Data today.

Consider the following illustrative example. Given that Lynch-
burg, Tennessee is a consolidated city-county whose boundaries
coincide with Moore County, Region Connection Calculus 8 (RCC8)
dictates that the true topological relation between the city and
the county must be equal (EQ). Computing the relation using the
GeoSPARQL-enabled Apache Marmo�a triplestore, however, will
return a partial overlap; see Fig. 3. �e reason for this is due in large
part to digitization errors. More concretely, the so-called double-
digitized boundaries problem in which the blue boundary has been
digitized to a greater degree of detail compared to the red boundary.
While such di�erences in granularity are common sources of error,
di�culties arising from uncertainty and vagueness are even more
troublesome. Whereas uncertainty stems from a lack of precise

7See, for example, the following overview of geodatabase topology rules by ArcGIS
h�p://resources.arcgis.com/en/help/main/10.2/01mm/pdf/topology rules poster.pdf.

http://resources.arcgis.com/en/help/main/10.2/01mm/pdf/topology_rules_poster.pdf

LDOW’17, April 2017, Perth, Australia Blake Regalia, Krzysztof Janowicz, and Grant McKenzie

Trait GeoSPARQL NeoGeo AGO
Uniform RDF structure 3 3

E�cient geometry storage 3

Content-negotiation for geometry format 3 3

Composite geometries 3 3

Geometry can persist externally 1 3

Determine geometry type 2 3 3 3

Access bounding box 2 3

Access raw geometry 2 3 3

1 = Geometry can persist in a local geodatabase or even on a remote system and without copies.
2 = From the triples’ RDF data alone (e.g., without using SPARQL).

Table 2 A comparison of strengths and weaknesses of the three di�erent approaches to storing geometry data: GeoSPARQL, NeoGeo and AGO.

Figure 3 Lynchburg, Tennessee is a consolidated city-county whose bound-
aries coincide with Moore County. While proper topological RCC8 relation
should be equal (EQ), computing the relation based on geometries alone will
return partial overlap (PO).

knowledge, vagueness is caused by intrinsically underdetermined
concepts that do not have clear borders [2]. For example, the true
shape of a city can be determined in theory however, measurement
accuracy, timeliness (the city may grow or shrink), and so forth,
impact the results. In contrast, the shape of a mountain or forest
cannot be exactly determined in practice nor theory as the transi-
tion zone between a mountain and a valley, as well as between a
forest and isolated trees, is conceptually vague [8]. In fact, the Lake
of the Woods example or the number of lakes in Minnesota more
generally are famous examples for this challenge as the number
of lakes depends on the size of many small lakes (under 10 acres)
which in turn depend on the seasonal water level and so forth.

3.2 Strict Topological Relations
To experiment with the e�ect of precomputed relations on a linked
dataset, we took a geospatial dataset consisting of counties, cities,
parks, streams, and so on from the United States and computed
several topological relations among polylines and polygons. Out

of 18.6k polygons and 7.7k polylines, we extracted a total of 68.6k
distinct relations to be materialized before querying takes place.
We only materialize a relation in one direction and use reasoning
to handle symmetric, transitive and disjoint properties. �ese strict
relations represent the topology of polygons a�er being cleaned
of digitization errors. We show the counts and statistics for this
precomputed set in Table 3.

To give an example of the impact this practice can have on
querying, we compared a topological GeoSPARQL query to its
equivalent topological AGO (precomputed) query. �e two SPARQL
queries are shown in Listing 3. A simple trial shows that where a
GeoSPARQL query takes 1318ms to complete due to the need for
on-demand computation, an equivalent precomputed topological
query takes 112ms , approximately 11× faster for our dataset. �e
other di�erence to our topological query is that it also returns more
results since it has cleaned the digitization errors, an important step
to GIS analysis that GeoSPARQL does not currently support.
a) GeoSPARQL
select ?place where {

<http://dbpedia.org/resource/Tulsa,_Oklahoma>
geosparql:hasGeometry [geosparql:asWKT ?wktA].

?place geosparql:hasGeometry [geosparql:asWKT ?wktB].
filter(geof:sfTouches(?wktA, ?wktB)) }

b) Our AGO approach
prefix agt: <http://awesemantic-geo.link/topology/> .
select ?place where {

<http://dbpedia.org/resource/Tulsa,_Oklahoma>
agt:touches ?place. }

Listing 3 Comparison of a topological SPARQL query for places that touch
the city of Tulsa, Oklahoma using (a) GeoSPARQL and (b) AGO.

3.3 Uncertainty and Vagueness
As we discussed above, strict/crisp topological relations (i.e., those
derived from an intersection-matrix of source geometries) alone
do not account for the vagueness and uncertainty principles that
exist for geographic data. �erefore, we propose a multi-layered
topological relations framework to encompass these principles in
a�empt to bring clarity to the fuzzy nature surrounding spatial
relations for regions. In other words, we supplement the set of
strict topological relations by computing additional topology for
features that may have broad boundaries [3] as well as for features
that may exhibit cognitive relations, e.g., Brazil is mostlyInside the
Southern Hemisphere.

�e challenges of computing topological relations for features
with broad boundaries are not limited to designing an ontology

Revisiting the Representation of and Need for Raw Geometries on the Linked Data Web LDOW’17, April 2017, Perth, Australia

Strict Topological Relations
avg. area/length of…

instances relation code le� geometry right geometry
19,134 polygon touches polygon EC 960km2 2, 049km2

1,272 polygon overlaps polygon PO 321km2 2, 974km2

1,287 polygon tpp polygon TPP 57km2 2, 653km2

2,577 polygon ntpp polygon NTPP 16km2 3, 052km2

3 polygon equals polygon EQ 830m2 836m2

19,543 polyline touches polygon TCH 652km 701km2

7,871 polyline crosses polygon PTH 290km 2, 733km2

5,733 polyline within polygon INC 6.5km 6, 863km2

11,227 polyline crosses polyline 395km 688km
Table 3 Some statistics about the distinct, strict topological relations computed between combinations of polyline and polygon using RCC8/DE-9IM[4] or 16-
Intersection-Matrix[5]. See references for codes. For cases comparing two geometries of the same type, the ‘le�’ is the shorter/smaller of the two.

that determines which features should be considered to have a
broad boundary and what types of relations may ensue, but also
deciding on a mathematical framework to use for calculating the
boundaries [3]. A good place to start with an ontology might be by
excluding cases that are forbidden by their de�nition. For example,
two counties may qualify for the agt:broadlyTouches relation if
they are located relatively nearby, however no two counties should
ever be considered for the agt:broadlyOverlaps relation as any area
in the U.S. can legally only be under the jurisdiction of one county.

Our method for calculating broad boundaries is to use the isoperi-
metric quotient of a polygon, given by Q = 4πArea

Per imeter 2 . A�er com-
puting a polygon-to-polygon distance matrix for each combination
of feature types (e.g., city-to-city, city-to-park, etc.) we sort the
distances to create a cumulative distribution function and select
the 0.05 percentile value as p. �en, a polygon’s broad boundary
radius R (i.e., bu�er radius) is given by R = Q · p. �is model fol-
lows the rationale that simpler polygons deserve broader boundary
radii than polygons having more complex structure because a �ner
resolution might generally imply a more precise digitization.

4 SUMMARY AND CONCLUSION
In this work we have revisited two pressing issues, how to store
geometries and what role do they play in querying Linked Data. We
showed that the established practices of storing complex geometries
(beyond points and bounding boxes) as RDF literals, while suitable
in some cases, should be reconsidered for other GIS applications
and the many domain datasets that make use of complex geome-
tries. We proposed an alternative method for storing geometry
data by representing them via URIs in RDF and allowing the client
to obtain data in the desired format by dereferencing the URI via
content negotiation. We then argued that many GIS and geographic
information retrieval queries do not utilize geometries directly but
rely on topological relations, and that this may hold for Linked Data
usage as well, i.e., users o�en want to know whether two places are
adjacent rather than what their exact geometries are. Computing
such topological relations on-demand using GeoSPARQL is possible
but leads to very common data quality errors. Furthermore, we
suggest that even with today’s geospatial query tools that supple-
ment Linked Data, supporting strict topological relations alone is

not enough to satisfy the spectrum of user-driven topology queries
about relations between regions due to uncertainty and vagueness.

Acknowledgments: We acknowledge support from USGS from
the Linked Data for the National Map award.

REFERENCES
[1] Ghislain Auguste Atemezing and Raphaël Troncy. 2012. Comparing vocabularies

for representing geographical features and their geometry. In Terra Cognita 2012
Workshop, Vol. 3.

[2] Brandon Benne�. 2001. What is a forest? On the vagueness of certain geographic
concepts. Topoi 20, 2 (2001), 189–201.

[3] Eliseo Clementini and Paolino Di Felice. 1997. Approximate topological relations.
International journal of approximate reasoning 16, 2 (1997), 173–204.

[4] Max J Egenhofer, Jayant Sharma, and David M Mark. 1993. A critical comparison
of the 4-intersection and 9-intersection models for spatial relations: formal
analysis. In Autocarto Conference. ASPRS American Society for Photogrammetry
and Remote Sensing ASPRS.

[5] Anna Formica, Mauro Mazzei, Elaheh Pourabbas, and Maurizio Rafanelli. 2012.
A 16-intersection matrix for the polygon-polyline topological relation for ge-
ographic pictorial query languages. In International Conference on Availability,
Reliability, and Security. Springer, 302–316.

[6] Wm Randolph Franklin. 1984. Cartographic errors symptomatic of underlying
algebra problems. In International Symposium on Spatial Data Handling, Zurich,
Switzerland, Vol. 286.

[7] Manolis Koubarakis and Kostis Kyzirakos. 2010. Modeling and queryingmetadata
in the semantic sensor web: �e model stRDF and the query language stSPARQL.
In Extended Semantic Web Conference. Springer, 425–439.

[8] Daniel R Montello. 2003. Regions in geography: Process and content. Foundations
of geographic information science (2003), 173–189.

[9] Kostas Patroumpas, Giorgos Giannopoulos, and Spiros Athanasiou. 2014. To-
wards GeoSpatial semantic data management: strengths, weaknesses, and chal-
lenges ahead. In Proceedings of the 22ndACMSIGSPATIAL International Conference
on Advances in Geographic Information Systems. ACM, 301–310.

[10] Ma�hew Perry and John Herring. 2012. OGC GeoSPARQL - A geographic query
language for RDF data. OGC Implementation Standard. Sept (2012).

[11] Claus Stadler, Jens Lehmann, Konrad Hö�ner, and Sören Auer. 2012. Linked-
GeoData: A core for a web of spatial open data. Semantic Web 3, 4 (2012),
333–354.

[12] �ierry Ubeda and Max J Egenhofer. 1997. Topological error correcting in GIS.
In International Symposium on Spatial Databases. Springer, 281–297.

	Abstract
	1 Introduction
	2 Representing Geometries with URIs
	3 What about Topology?
	3.1 Challenges
	3.2 Strict Topological Relations
	3.3 Uncertainty and Vagueness

	4 Summary and Conclusion
	References

