Volunteered Geographic Services:
Developing a Linked Data Driven Location-based Service

Alexander Savelyev

Pennsylvania State University,

azsb362Q@psu.edu

Sen Xu

Pennsylvania State University,

Krzysztof Janowicz
University of California, Santa
USA Barbara, USA

jano@geog.ucsb.edu

Christoph Mdilligann

University of Miinster,

Jim Thatcher
Clark University, USA

jethatcher@gmail.com

Wei Luo

Pennsylvania State University,

USA Germany USA

senxu@psu.edu

ABSTRACT

The term Volunteered Geographic Information (VGI) de-
scribes various layperson-based, geo-collaboration projects
to collect, maintain, and visualize information. VGI has
been successfully utilized in scenarios such as emergency re-
sponse and is also increasingly integrated into commercial
products. Based on an analysis of existing projects and re-
search, we propose to extend the idea of VGI by introduc-
ing Volunteered Geographic Services (VGS). Instead of con-
tributing information, volunteers can request or offer micro-
services to their local community. We provide a flexible
server framework that handles service requests and offers.
We also implement a smartphone application developed us-
ing Google’s Android platform. The server and mobile client
are realized following the Linked Data paradigm and using
Semantic Web technologies. In this paper, we discuss the
idea behind VGS, motivate it using two scenarios, and ex-
plain the technical realization.

Keywords
Location-based Services, Volunteered Geographic Informa-
tion, Linked Data, Mobile Computing

1. MOTIVATION

The term Volunteered Geographic Information (VGI) was
coined by Goodchild [5] to describe the multitude of layper-
son contributions to the field of geographic information sci-
ence or geography in general. The most well-known VGI
projects are OpenStreetMap', WikiMapia?, and Ushahidi®.
Presently, VGI is predominantly centered around collabo-
rative mapping and visualization. OpenStreetMap, for ex-

1
www.openstreetmap.org

2www.wikimapia.org

3www.ushahidi.com

cmuelligann@uni-muenster.de

wull32@psu.edu

ample, aims at developing a freely accessible and editable
map of the earth, while Ushahidi maps cases of political re-
pression and has shifted to other kinds of emergence reports
since the Haiti earthquake [10]. Despite the diversity in their
contents and user communities, all VGI projects share the
vision of collaborative data creation and maintenance, and
can be regarded as special geospatial cases of user-generated
content [5]. The provenance and quality of geospatial col-
laborative data have been a recent topic of research: Zook et
al. [17] studied the role of VGI during the Haiti earthquake,
while Goodchild and Glennon [6] investigated the wildfires in
Santa Barbara, California. Both reports highlight the spe-
cific role of crowdsourcing in VGI, i.e., the assumption that
data collected by several contributors is more likely to re-
flect the situation on the ground than information provided
by a single, authoritative observer.

Based on existing research on VGI, Volunteered Geographic
Services (VGS) may take geo-collaboration to the next level.
In contrast to providing data, the motivation behind VGS
is to develop an infrastructure to contribute and exchange
micro-services. Users may announce service offerings or pub-
lish service requests. The type of such human services is not
limited by the framework and may range from mere courte-
sies to serious emergency assistance. The former case, may
involve a user asking for the current driving-related weather
conditions in a location, something fulfilled by another user
looking out of her window. In the latter, a user could re-
quest help in removing a fallen tree from the street or even
offering transport during a natural disaster such as a flood
or a storm. Automatic matchmaking approaches for such
micro-services were recently proposed by Raubal and Win-
ter [12]. The VGS system allows users to see which requests
and offers have been published and how they are linked to
each other, e.g., whether a particular request has already
been answered by an offering. Essentially, Volunteered Ge-
ographic Services are a human-centered kind of Location-
Based Services (LBS), one that allows offering and request-
ing through the use of mobile devices such as Android-based
smartphones.

The remainder of this paper is structured as follows: two
hypothetical scenarios are described as a means of clarifying
the role of VGS and to place it in relation to other projects

such as SeeClickFix.? Next, the Linked Data model and
the VGS Service Bus are introduced. Afterwards, the mo-
bile client is presented. Finally, the paper concludes with a
summary, lessons learned, and an outlook to future research.

2. SCENARIOS FOR VGS

The concept of Volunteered Geographic Services, like VGI, is
not restricted to a specific application area; however, the fol-
lowing two scenarios highlight both its relevance and added
functionality when compared to traditional VGI.

The first scenario describes a potential everyday use of VGS
and is the running example for section 4.2. Snow shoveling
is a typical early morning activity during winters in Central
Pennsylvania. In case of unexpected snow accumulation,
residents must schedule an additional one or two hours for
shoveling. While some residents possess snowplows, others
do not. Using the VGS system, a resident in a hurry could
send out a service request for use of a snowplow. Nearby
VGS users can answer the request and offer aid. While this
case begins with a service request, the VGS system also
allows users to create service offers. In this situation, a resi-
dent with a snowplow could create an offer and wait for other
users to accept. The VGS Android application described in
section 4.2 displays requests and offers on a map, supports
spatial and temporal filters, and also shows whether a re-
sponder has already committed to offer support.

The second scenario depicts VGS utility in emergency man-
agement. According to the Report of the US National Re-
search Council: geospatial data and tools should be an es-
sential part of all aspects of emergency management from
planning for future events, through response and recovery, to
mitigation of future events. Yet they are rarely recognized as
such, because society consistently fails to invest sufficiently
in preparing for future events, however inevitable they may
be [9, p.2]. The literature describes several successful appli-
cations of Volunteered Geographic Information in emergency
scenarios such as the Haitian Earthquake, wildfires in Cal-
ifornia, and the Japanese earthquake [17, 6, 11]. In these
cases, VGI was used to acquire massive, up-to-date data
from the dynamic and complex situation on the ground. For
instance, the OpenStreetMap community has re-mapped the
transportation infrastructure after the earthquake in Haiti.

While this kind of data is crucial to the coordination of
emergency response teams, it does not solve the support
bottleneck: while volunteers collect data, task-supporting is
coordinated only by sanctioned, authoritative parties. VGS
offers a potential solution to this bottleneck, by allowing
micro-services to be coordinated and performed by volun-
teers. VGS moves the idea of VGI one step further as not
only authorities, but also the general public may act as emer-
gency responders. Any citizen using a smartphone with GPS
technology can provide aid on a peer-to-peer basis. For VGS
to work in practice, the essential requirement component is a
data server that allows users to submit help requests with lo-
cation information and that affords potential responders the
ability to search and browse help requests in their geospa-
tial vicinity. In other words, and with respect to emergency
response, geo-collaboration in VGS does not focus on pro-

“http://www.seeclickfix.com/

viding data but on the collaborative coordination of action
on the ground. Potential examples include users announc-
ing the presence of functioning transportation, coordinating
sandbag placement, or aiding in the removing of fallen trees.

3. RELATED WORK

Goodchild [6] credited the rise of VGI to technological de-
velopment, which allows average citizens to determine po-
sition accurately and gain map-making abilities. Accom-
panied by the rise of user-generated content, volunteered
geographic data ranges from innocuous information such as
snow quality on ski hills to maps of criminal violations [13].
While individuals may remain invisible to GPS [13], using
VGI to address emergency response issues is increasingly
common [17, 11]. VGI-based platforms such as Ushahidi
rely upon citizens volunteering geographic information in
order to aid workers in emergency response situations. VGI
and VGS are closely related to crowdsourcing [7], which de-
notes the idea of using open calls to an undefined group
of people to complete a (usually large-scale) task. Crowd-
sourcing has now been widely and successfully applied in
business models under the assumption that the open call
can draw a crowd that is best fitted for the task [8]. The
success of VGS relies upon a self-established user commu-
nity in which the citizens are not only willing to volun-
teer information but also to actively search and respond to
requests within their means of action. Examples of such
behavior include Airbnb (http://www.airbnb.com/), a so-
cial networking service taylored towards spur-of-the-moment
rentals, and Avego (http://www.avego.com/), a transporta-
tion management platform with on-demand ride-sharing ca-
pability. However, actions may be as simple as looking out
of the window while remaining useful to other users.

SeeClickFix is an emerging Web-based service which shares
similar ideas with VGS. SeeClickFix allows users to report
on non-emergency issues, such as broken windows or idling
vehicles on street. It also allows government officials to mon-
itor for important health and safety issues, such as cracked
sidewalks or street crime. At the present, there is no ex-
isting framework for VGS that eases the implementation of
services such as SeeClickFix. VGS applications can be as
manifold as VGI, hence it is necessary to set a common
ground for developers that aim at addressing different user
communities. This can be solved through a generic request-
offer messaging bus based on a Linked Data model [2]. All
requests, offers, users, and their related elements, such as
timestamps and locations, are openly available and can be
combined with other sources. For instance, and in contrast
to SeeClickFix, this framework can link requests to event
data provided by sources like data.gov® or any other Linked
Data source. The Android application presented in section
4.2 is just one tool running on top of the VGS infrastructure.

4. LINKED DATA MODEL

A service request asking for assistance may be answered by
an offer, but also attached to another request to express that
users share the same service needs. In the snowplowing case,
the secondary request may indicate that another car is stuck
in a nearby location. As these requests reinforce an existing
request, they are not services in their own right. The more

Shttp://www.data.gov

generic term action is used when referring to all offers, re-
quests, and their interlinkages. A network of interconnected
requests and offers can also be used to establish trust in VGI
[1], e.g., to filter out spam messages as well as providing a
more complete picture of ongoing events. In this respect,
VGS fits well within other work on the Semantic Sensor
Web, e.g., to detect severe weather conditions [14]. In our
VGS ontology, these interconnecting relationships are mod-
eled by the leadingAction property and its sub-properties.

rdfs:subPropertyOf

rdfs:domain

leadingAction rdfs:subPropertyOf

rdfs:range
ingOffer

rdfs:range

rdfs:domain

rdfs:subClassOf

rdfs:subClassor

rdfs:range

rdfs:domain

rdfs:domain rdfs:subProperyOf|

targetAction

targetRequest
rdfs:domain

rifsirange
rdfs:range
targetOffer
rdfs:subProperty0f

rdfs:subPropertyCOf

creationTime

rdfs:domain
time)

rdfs:subPropertyOf

rdfs:domain
user)
targetL "

rdfs:domain

1dfs:subProperyor

rdfs:domain E

location rdfs:subPropertyOf

sourceLocati07

Figure 1: Classes (oval) and Properties (hexagonal)
in the RDF schema of the VGS framework ontology.

In addition to interactions between requests and offers, an
action may have different kinds of metadata: a user, his
or her location, the location the action refers to, the time
of creation and expiration, or the actual content of the mes-
sage. This metadata is not modeled in the VGS framework’s
ontology as each specific VGS implementation may require
different, application-level ontologies. Instead, the frame-
work’s ontology is able to incorporate external vocabularies
such as FOAF®. The generic model allows basic server-side
management of requests, offers, and associated information
within the framework; see Figure 1. Functionality that goes
beyond that, e.g., spatial indexing and queries, needs to be
addressed by the actual implementation, which, for instance,
might use geographical coordinates or place names combined

Friend Of A Friend; see http://wuw.foaf-project.org/

leadi lest
rdfs:range =0
rdfs:damain|

with a gazetteer service to fill the location property. In other
words, while application ontologies for specific VGS applica-
tions may introduce object properties and classes to model
users, types of services, etc, the server side ontology does
not restrict the range of the user, location, time, or message
relations.

The following listing shows an example of a request in N3
notation that connects to Geonames.org for place related
information and FOAF for user profiles:

@prefix: <http://vgs.psumobile.org/core#> .
@prefix geo: <[...Jw3.orgl...]/geo/wgs84_pos#> .
@prefix rdf: <[...Jw3.org/...]/22-rdf-syntax-ns#> .

[1 a :Request ;
:creationTime "2011-03-01T14:01:23"
~~<[...]/XMLSchema#dateTime> ;
:leadingRequest <[...]/requests/request123/> ;
:message "Stuck in snow in front of
Walker Bldg."""<[...]/2001/XMLSchema#tstring> ,
"3"~"<http://emergency.example.org/coref#furgency> ;
:sourceLlocation
[geo:lat "40.794" ;
geo:long "-77.866"

:targetLocation <[...]geonames.org/7730361/about.rdf> ;
:user <[...]lpsu.edu/kuji3/foaf.rdf> .

In the example above, references are made to a number of
distinct namespaces, including PSUMobile (empty prefix),
Geonames.org (prefix "geo”), RDF Schema (prefix "rdf”),
and FOAF. The location of this particular request is refer-
enced through the property “sourceLocation” (Geonames.org
namespace is referenced through its respectful prefix). User
information is referenced through the property "user” and is
specified with a full URIL.

Following the Linked Data paradigm, each action, e.g., a
service request, is identified using a URI and linked to other
URIs representing service offers or support for this request.
Data between the server and client applications is trans-
ferred via HTTP.

4.1 VGS Service Bus Implementation

This section outlines the current implementation of the VGS
Service Bus, a core component of the server framework. Our
use of the term ”"Service Bus” is different from that in general
information domain. In the context of software architecture,
enterprise service bus (ESB) describes the means by which
independent software components (dubbed "services”) com-
municate with each other. We use the term ”services” in
its literal meaning, as in a “helpful act” towards a person
or a cause. "Service bus” is therefore seen as a medium for
effective exchange of such services.

The bus has three main goals:

e Collect, store, and organize the actions, i.e., requests
or offers, submitted by the VGS users.

e Allow users to perform spatial, temporal, and thematic
queries over existing actions.

e Provide auxiliary services necessary for the mainte-
nance of a large-scale, multi-user system.

http://www.foaf-project.org/

In order to achieve these goals, a modular system design
has been implemented. The main components of the VGS
Service Bus are the Triploid API, VGS Web Service, Jena
based Linked Data engine, and the PostgreSQL Database.
Figure 2 illustrates these components along with their modes
of interaction. The related transformations of the original
Action class from the VGS clients to the database and back
are also shown. Each component is described in greater
detail below.

Java Action Class

\VGS Client

Java Variables
Triploid API Serialized RDF

HTTP GET and POST

VGS Web Service

Serialized RDF and SPARQL
Linked Data Engine Jena Action Model
SQL Queries

PostgreSQL DB Relation

Figure 2: VGS Service Bus Implementation. Main
components are shown as bold rectangles, their
modes of interaction are shown as arrows, and
the transformations of the original Action class are
shown as faint rectangles. Components colored in
green are deployed locally (on the client device),
whereas the components colored in blue are de-
ployed on the remote server.

From the perspective of the VGS Service Bus, the role of
the VGS Client is to add new actions to the system and
request sets of actions in the form of a query. This function-
ality, along with the end-user experience on the client side,
is presented in more detail in this section. The Triploid
API is a Java library that converts the original Action class,
as generated by the client, into serialized RDF statements.
The API is realized on top of Androjena 0.5 7, a minimal
port of the initial Jena framework to the Android platform.
Staying within the realm of Semantic Web technologies and
representation languages reduces the software engineering
complexity and keeps the client (and server) more flexible
in terms of future changes and extensions. In fact, moving

"http://code.google.com/p/androjena,/

the business logics from the source code in to the data is one
of the core goals of the Semantic Web.

The VGS Web Service is the main gate through which the
actions are exchanged between the client and the Linked
Data engine. VGS Web Service abides by the principles of
a RESTful service - it implements a uniform client-server
interaction interface, is stateless, and uses HT'TP methods
(GET and POST) explicitly. It is implemented using Tom-
cat, i.e., based on Java Servlets. The VGS Web Service
triggers functions in the Linked Data engine and handles
the incoming actions and user-specified query parameters.
Action URIs, user URIs, and other data designated for the
client side are managed by the VGS Web Service as well.
The Linked Data engine is realized using Jena RDF API and
Jena SDB. It parses the incoming actions, forms SPARQL
queries according to client specifications, retrieves individual
actions from the database upon client request, and provides
auxiliary services necessary for the maintenance of the sys-
tem as a whole. Finally, a PostgreSQL database is used
to store and organize the collection of actions generated by
the VGS clients. Transparent storage of RDF data in the
relational database is made possible by the Jena SDB API
which provides the necessary functionality.

Whenever a new action is added to the system, the following
events are triggered:

1. The action Java object is converted to RDF using our
Triploid API.

2. The serialized RDF is sent to the VGS Web Service
through a POST message and passed on to the Linked
Data engine.

3. An action URI is generated and pushed to the Post-
greSQL database along with other properties of the ac-
tion received from the client side, e.g., the time-stamp.

4. The action URI is returned to the client as a confir-
mation of a successful data upload and to display the
service offer or request on the client’s map.

Whenever a set of query parameters is generated by the
client, the following events are triggered:

1. Query parameters are sent to the VGS Web Service
through a GET message and passed on to the Linked
Data engine.

2. A SPARQL query is generated and Jena is accessing
the underlying PostgreSQL Database.

3. Query results, i.e., RDF triples, are passed back to the
client side.

4. A set of Java action objects is generated from the RDF
triples using the Triploid APIL.

The resulting implementation of the VGS Service Bus is
platform-independent, remissive of changes to the underly-
ing Linked Data Model, and can be adopted to other VGS-
based applications.

4.2 VGS Client Implementation

This section describes the implementation of the VGS client
as a mobile application for the Google Android platform.
The workflow of the client implementation is depicted in
Figure 3.

° Browse Actions

&g
users
o Query BBox Submit Request Respond to Action Action Parser § Visualize Actions
g
% -Device location -User name -User name
; ~num of Actions -Action title +Link to original action ;isv:'f:Apl Google Map API
Z -timeStamp -Action description | -respond description riploi s
2 filterinfo -Geo/TimeStamp -Geo/TimeStamp -Jlena
z\e &
g, & S
«7% G 219 5 «8°° &5 2
3= o
2% a\" E L o

Server

Figure 3: Workflow of the client to server commu-
nication.

The mobile client provides an interface for users to browse
existing actions, submit new actions, and respond to existing
actions. An action, in this context, is defined as a user ini-
tiated message, such as requesting help or offering help, and
includes attributes such as UserName, ActionTitle, Action-
Description, Location, and TimeStamp. When the applica-
tion is started, the default GUI is showing current actions
in the user’s vicinity. In Figure 3, the blue arrows depict
the workflow for browsing existing actions. First, the device
location is retrieved from the GPS component of the smart-
phone to perform spatial filtering using the map extent as
a bounding box. The number of actions to retrieve is set
to 10 as default, due to the display limitation on a mobile
device; for an in depth discussion of this decision and the
resulting consequences, see [15]. The TimeStamp for tempo-
ral filtering is set to the current time according to the VGS
client. These parameters form a query that is passed on to
the server and is then processed by the servlet to return the
most 10 recent actions matching the spatial and temporal
filters. The server’s response is parsed by our Triploid API
which generates action instances, i.e., Java objects. These
actions are then visualized using the Google Map API. The
user can freely zoom in or out and pan. The TimeStamp can
also be changed to get less recent actions. Besides spatial
and temporal filters, a thematic filter is implemented using
hastags as known from Twitter. These hastags are auto-
matically extracted from the text body of service offers or
requests. The initial GUI is shown in Figure 4.

Next, if users want to submit a request, they may press the
plus button depicted in Figure 4 to switch to a request form
view; see Figure 5. Users can type in their name, a short ti-
tle for the service, and a brief textual description which may
contain hashtags. The title should be informative, as it will
appear on the central browsing view described above. The
Location (either determined by GPS, WiFi, 3G, or the last
cached location) and Unix TimeStamp are automatically re-
trieved from the device and included when the user submits
the request to the server.

When browsing the actions on the map, only action titles are
displayed. To read the details, users may press the action
title and switch to a detailed view as depicted in Figure 6.

ride =

L

Ge""ersf need a ride

t,‘nun{]\‘

Figure 4: VGS Android GUI to browse and select
existing actions

il & 9:01em
GSAndroidApp .
Your request title

Figure 5: VGS Android GUI to submit a request

In this view, the user may respond to the request by pressing
the shovel icon. Responding and submitting requests have
similar workflows. Responding adds an additional attribute,
link to original action. The workflow for both submitting
and responding to a request are depicted in Figure 3 as green
arrows. The Like button is similar to the one in Facebook
and confirms a requested services. It can be interpreted in

two ways, either the user is requesting the same service (at
a nearby location) or confirms the need for this service.

25 Ml &8 9:00em

need snowplow
stuck in the #snow need #snowplow help

Like (confirm this request)

Offer help

Figure 6: VGS Android GUI for detailed action view

In summary, the Triploid API completes the data circle at
the client end. The Google Map API and different views
(Android’s term for content screens) allow the user to inter-
act with the server, e.g., by querying using spatial, temporal,
and thematic filters.

5. CONCLUSIONS AND OUTLOOK

In this short paper, we introduced the concept of Volun-
teered Geographic Services, situated both as an extension of
Volunteered Geographic Information (VGI) and in relation
to other projects such as SeeClickFix. While two potential
scenarios were suggested, the VGS framework itself is not
restricted to specific applications but provides a generic in-
frastructure for storing and retrieving human services. The
framework is realized using the Linked Data paradigm and
Semantic Web technologies. We also present a mobile client
based on Google’s Android operating system and deployed
on top of the framework. To exchange data between the
Android client and the Web service and triplestore, we im-
plemented a marshalling API, called Triploid, on top of the
experimental Androjena API. The client implements spatial,
temporal, and thematic filters and passes the query over to
the Web service using a RESTful approach. The Web ser-
vice translates the query to SPARQL to retrieve the results
from the Jena triplestore. The current state of the software
was made available as free and open source software.

The Mobile Semantic Web is still in an early stage, the ar-
chitecture proposed by Tramp et al. [16] and the work from
David and Euzenat [3] being rare examples. Consequently,
supporting APIs are in an experimental stage, there are no
ontologies tailored to the needs of mobile applications, and
best practice guides are not available. This makes develop-
ing Linked Data driven applications for smartphones chal-
lenging. One key problem were missing methods in the An-
drojena API that have not been ported from Jena so far.
Another challenge was the lack of spatial query support in
SPARQL. OGC’s GeoSPARQL will close this gap and easy
development. Based on our first experience with the alpha
version of the Parliament triplestore®, future versions of the

8http://parliament.semwebcentral.org/

VGS framework will be based on Parliament and thus sup-
port GeoSPARQL.

The VGS application and server are still under heavy de-
velopment; future work will add missing functionality and
also focus on interlinking service requests and offers with ex-
ternal Linked Data sources, e.g., data related to places and
events. In addition to added functionality and field testing,
VGS raises a host of potential problems. First, much like
VGI, VGS is potentially vulnerable to both spam and fraud.
While studies have examined VGI credibility and reliability
both in day to day and crisis uses, the shift from information
to action increases both the ability to commit fraud and the
potential repercussions of doing so [17, 6, 4]. Trust and rep-
utation are crucial for volunteered services, hence implemen-
tation of location-aware trust and reputation models [1] is
another direction for further work. In addition to fraud and
spam, the VGS system could also be used for illicit purposes.
While VGS was conceptualized as an aid to crisis response,
the generic framework need not to be put to that use. Trust
and reputation models must be tested not only against fraud
and spam but also illicit, albeit sincere, service offers. These
potential weaknesses are part and parcel of the strength of
volunteered, or crowd sourced, information as well. For this
reason, VGS is not meant to replace official crisis response
services, as their need for verified information and legal ac-
countability cannot be met by a decentralized process, but
rather as an on the ground augmentation that incorporates
ground-level actors, those who are often most involved and
affected by emergencies. This said, and as introduced be-
fore, VGS is not restricted to emergency scenarios but any
services useful for a local community.

Finally, the data produced by VGS users may provide a
rich source for spatial and temporal data analysis as well as
pattern mining. For instance, the type of requested service
will, most likely, differ between neighborhoods and regions.
Similarly, one would expect that some service types are cor-
related to weekdays or seasons.

6. ACKNOWLEDGMENTS

The VGS mobile client and server have been developed as
a project in the PSUMobile course in spring 2011 by eleven
graduate and undergraduate students from Penn State’s
Geography program. All source code is available as free
and open source software at http://vgs.svn.sourceforge.
net/viewvc/vgs/.

7. REFERENCES

[1] M. Bishr and K. Janowicz. Can we trust information?
- the case of volunteered geographic information. In
Towards Digital Farth Search Discover and Share
Geospatial Data Workshop at Future Internet
Symposium, volume Vol-640. CEUR-WS, 2010.

[2] C. Bizer, T. Heath, and T. Berners-Lee. Linked Data —
The Story So Far. International Journal on Semantic
Web and Information Systems, 5(3):1-22, 2009.

[3] J. David and J. Euzenat. Linked data from your
pocket: The android rdfcontent-provider. volume 6496
of LNCS. Springer, 2010.

[4] A. J. Flanagin and M. J. Metzger. The Credibility of
Volunteered Geographic Information. GeoJournal,

http://vgs.svn.sourceforge.net/viewvc/vgs/
http://vgs.svn.sourceforge.net/viewvc/vgs/

[16]

72(3-4):137-148, 2008.

M. Goodchild. Citizens as sensors: the world of
volunteered geography. GeoJournal, 69(4):211-221,
2007.

M. F. Goodchild and J. A. Glennon. Crowdsourcing
geographic information for disaster response: a
research frontier. International Journal of Digital
Earth, 3(3):231-241, 2010.

J. Howe. The Rise of Crowdsourcing. The Wired
Magazine, 14.06, 2006.

J. Howe. Crowdsourcing: Why the Power of the Crowd
Is Driving the Future of Business. Crown Business,
2008.

National Research Council. Successful Response Starts
with a Map: Improving Geospatial Support for
Disaster Management. The National Academies Press,
2007.

O. Okolloh. Ushahidi, or ’testimony’: Web 2.0 tools
for crowdsourcing crisis information. Participatory
Learning and Action, 59(6):65-70, 2009.

M. Parry. Academics Join Relief Efforts Around the
World as Crisis Mappers. The Cronicle of Higher
FEducation, March 27, 2011.

M. Raubal and S. Winter. A Spatio-Temporal Model
Towards Ad-Hoc Collaborative Decision-Makin. In
M. S. M. Painho and H. Pundt, editors, Geospatial
Thinking, Lecture Notes in Geoinformation and
Cartography, pages 279-297. Springer, 2010.

N. Schuurman. An Interview with Michael Goodchild.
Environment and Planning D: Society and Space,
27(4):573-580, 2009.

A. Sheth, C. Henson, and S. Sahoo. Semantic Sensor
Web. IEEE Internet Computing, pages 78-83, 2008.
J. Thatcher, C. Miilligann, W. Luo, S. Xu,

E. Guidero, and K. Janowicz. Hidden Ontologies -
How Mobile Computing affects the Conceptualization
of Geographic Space. In Proceedings of Workshop on
Cognitive Engineering for Mobile GIS 2011
(CEMob2011), 2011.

S. Tramp, P. Frischmuth, N. Arndt, T. Ermilov, and
S. Auer. Weaving a distributed, semantic social
network for mobile users. In Proceedings of the 8th
extended semantic web conference on The semantic
web: research and applications - Volume Part I,
ESWC’11, pages 200214, Berlin, Heidelberg, 2011.
Springer-Verlag.

M. Zook, M. Graham, T. Shelton, and S. Gorman.
Volunteered Geographic Information and
Crowdsourcing Disaster Relief: A Case Study of the
Haitian Earthquake. World Medical € Health Policy,
2(2):231-241, 2010.

	1 Motivation
	2 Scenarios for VGS
	3 Related Work
	4 Linked Data Model
	4.1 VGS Service Bus Implementation
	4.2 VGS Client Implementation

	5 Conclusions and Outlook
	6 Acknowledgments
	7 References

