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Abstract16

With recent advancements in deep convolutional neural networks, researchers in geographic in-17

formation science gained access to powerful models to address challenging problems such as18

extracting objects from satellite imagery. However, as the underlying techniques are essentially19

borrowed from other research fields, e.g., computer vision or machine translation, they are often20

not spatially explicit. In this paper, we demonstrate how utilizing the rich information embedded21

in spatial contexts (SC) can substantially improve the classification of place types from images22

of their facades and interiors. By experimenting with different types of spatial contexts, namely23

spatial relatedness, spatial co-location, and spatial sequence pattern, we improve the accuracy24

of state-of-the-art models such as ResNet – which are known to outperform humans on the Im-25

ageNet dataset – by over 40%. Our study raises awareness for leveraging spatial contexts and26

domain knowledge in general in advancing deep learning models, thereby also demonstrating that27

theory-driven and data-driven approaches are mutually beneficial.28

2012 ACM Subject Classification Computing methodologies → Computer vision tasks; Com-29

puting methodologies → Neural networks; Theory of computation → Bayesian analysis30

Keywords and phrases Spatial context, Image classification, Place types, Convolutional neural31

network, Recurrent neural network32
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1 Introduction34

Recent advancements in computer vision models and algorithms have quickly permeated35

many research domains including GIScience. In remote sensing, computer vision methods36

facilitate researchers to utilize satellite images to detect geographic features and classify37

land use [5, 26]. In urban planning, researchers collect Google Street View images and38

apply computer vision algorithms to study urban change [22]. In cartography, pixel-wise39

segmentation has been adopted to extract lane boundary from satellite imagery [32] and deep40

convolutional neural network (CNN) has been utilized to recognize multi-digit house numbers41

from Google Street View images [10]. These recent breakthroughs in computer vision are42
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achieved, in equal parts, due to advances in deep neural networks as well as the ever-increasing43

availability of extensive training datasets. For example, the classification error in the latest44

image classification challenge using the ImageNet dataset is down to about 0.023.145

However, such impressive results do not imply that these models have reached a level46

in which no further improvement is necessary or meaningful. On the contrary, such deep47

learning models which primarily depend on visual signals are susceptible to error. In fact,48

studies have shown that deep (convolutional) neural networks suffer from a lack of robustness49

to adversarial examples and a tendency towards biases [25]. Researchers have discovered that,50

by incorporating adversarial perturbations of inputs that are indistinguishable by humans,51

the most advanced deep learning models which have achieved high accuracy on test sets can52

be easily fooled [6, 11, 28]. In addition, deep learning models are also vulnerable to biased53

patterns learned from the available data and these biases usually resemble many unpleasant54

human behaviors in our society. For instance, modern neural information processing systems55

such as neural network language models and deep convolutional neural networks have been56

criticized for amplifying racial and gender biases [3, 4, 25, 33]. Such biases, which can57

be attributed to a discrepancy between the distribution of prototypical examples and the58

distribution of more complex real world systems [16], have already caused some public debates.59

To give a provocative example, almost three years after users revealed that Google erroneously60

labeled photos of black people as “gorillas”, no robust solutions have been established besides61

simply removing such labels for now. 2
62

The above-mentioned drawbacks are being addressed by improvements to the available63

training data as well as the used methods [23, 3]. In our work, we follow this line of thought to64

help improve image classification. In our case, these images depict the facades or interiors of65

different types of places, such as restaurants, hotels, and libraries. Classifying images by place66

types is a hard problem in that more often than not the training image data is inadequate to67

provide a full visual representation of different place types. Solely relying on visual signals,68

as most deep convolutional neural networks do, falls short in modeling the feature space69

as a result. To give an intuitive example, facades of restaurants may vary substantially70

based on the type of restaurant, the target customers, and the surrounding. Their facade71

may be partially occluded by trees or cars, may be photographed from different angles and72

at different times of the day, and the image may contain parts of other buildings. Put73

differently, the principle of spatial heterogeneity implies that there is considerable variation74

between places of the same type.75

To address this problem and improve classification accuracy, we propose to go beyond76

visual stimuli by incorporating spatial contextual information to help offset the visual77

representational inadequacy. Although data availability is less of an issue nowadays, the biased78

pattern in the data poses a real challenge, especially as models such as deep convolutional79

neural networks take a very long time to train. Instead of fine-tuning the parameters (weights)80

by collecting and labeling more unbiased data, which are very resource-consuming, we take81

advantage of external information, namely spatial context. There are many different ways82

one can model such context; in this work, we focus on the types of nearby places. We explore83

and compare the value of three different kinds of spatial context, namely spatial relatedness,84

spatial co-location, and spatial sequence pattern.85

We combine these context models with state-of-the-art deep convolutional neural network86

models using search re-ranking algorithms and Bayesian methods. The result shows that,87

by considering more complex spatial contexts, we can improve the classification accuracy88

2 https://www.wired.com/story/when-it-comes-to-gorillas-google-photos-remains-blind/

https://www.wired.com/story/when-it-comes-to-gorillas-google-photos-remains-blind/
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for different place types. In fact, our results demonstrate that a spatially explicit model89

[9], i.e., taking nearby places into account when predicting the place type from an image,90

improves the accuracy of leading image classification models by at least 40%. Aside from this91

substantial increase in accuracy, we believe that our work also contributes to the broader92

and ongoing discussion about the role of and need for theory, i.e., domain knowledge, in93

machine learning. Finally, and as indicated in the title, our spatial context (SC ) models,94

can be added to any of the popular CNN-based computer vision models such as AlexNet,95

ResNet, and DenseNet – abbreviated to xNet here.96

The remainder of this paper is organized as follows. Section 2 provides an overview of97

existing work on spatial context and methods for incorporating spatial information into98

image classification models. Section 3 presents the image classification tasks and provides99

information about the convolutional neural network models used in our study. Section 4100

explains in detail three different levels of spatial context and ways to combine them in image101

classification models. Section 5 presents the results. Finally, Section 6 concludes the research102

and points to future directions.103

2 Related Work104

There is a large body of work that utilizes spatial context to improve existing methods and105

provide deeper insights into the rich semantics of contextual information more broadly. For106

instance, spatial context has been recognized as a complementary source of information in107

computational linguistics. By training word embeddings for different place types derived108

from OpenStreetMap (OSM) and Google Places, Cocos and Callison-Burch [7] suggested that109

spatial context provides useful information about semantic relatedness. In Points of Interest110

(POI) recommendation, spatial context has been used to provide latent representations of POI,111

to facilitate the prediction of future visitors [8], and to recommend similar places [34]. By112

implementing an information theoretic and distance-lagged augmented spatial context, Yan113

et al. [30] demonstrated that high-dimensional place type embeddings learned using spatial114

contexts can reproduce human-level similarity judgments with high accuracy. The study115

showed that such a spatially explicit Place2Vec model substantially outperforms Word2Vec-116

based models that utilize a linguistic-style of context. Liu et al. [21] used spatial contexts to117

measure traffic interactions in urban area. In object detection, Heitz and Koller [13] leveraged118

spatial contexts in a probabilistic model to improve detection result. Likewise, by embracing119

the idea that spatial context provides valuable extrinsic signals, our work analyzes different120

kinds of spatial contexts and tests their ability to improve image classification of place types.121

Existing work on image classification has realized the importance of including a geographic122

component. One direction of research focused on enriching images with geospatial data.123

Baatz et al. [1] took advantage of digital elevation models to help geo-localize images in124

mountainous terrain. Lin et al. [20] made use of land cover survey data and learned the125

complex translation relationship between ground level images and overhead imagery to extend126

the reach of image geo-localization. Instead of estimating a precise geo-tag, Lee et al. [19]127

trained deep convolutional neural networks to enrich a photo with geographic attributes such128

as elevation and population density. Another direction of research (which is more similar to129

our study) focused on utilizing geographic information to facilitate image classification. In130

order to better understand scenes and improve object region recognition, Yu and Luo [31]131

exploited information from seasons and location proximity of images using a probabilistic132

graphical model. Berg et al. [2] combined one-vs-most image classifiers with spatiotemporal133

class priors to address the problem of distinguishing images of highly similar bird species.134

GISc ience 2018
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Tang et al. [29] encoded geographic features extracted from GPS information of images into135

convolutional neural networks to improve classification results.136

Our work differs from the existing work in that we explicitly exploit the distributional137

semantics found in spatial context [30] to improve image classification. Following the linguistic138

mantra that one shall know a word by the company it keeps, we argue that one can know139

a place type by its neighborhood’s types. This raises the interesting question of how such140

a neighborhood should be defined. We will demonstrate different ways in which spatial141

contextual signals and visual signals can be combined. We will assess to what extent different142

kinds of spatial context, namely spatial relatedness, spatial co-location, and spatial sequence143

pattern, can provide such neighborhood information to benefit image classification.144

3 Image Classification145

In this section, we first describe the image classification task and the data we use. The task is146

similar to scene classification but we are specifically interested in classifying different business147

venues as opposed to natural environment. Then we explain four different deep convolutional148

neural networks that solely leverages the visual signals of images. These convolutional neural149

network models are later used as baselines for our experiment.150

3.1 Classification Task151

Our task is to classify images into one of the several candidate place types. Because we want152

to utilize the spatial context in which the image was taken, we need to make sure each image153

has a geographic identifier, e.g. geographic coordinates, so that we are able to determine its154

neighboring place and their types. In order to classify place types of images, we consider155

the scene categories provided by Zhou et al. [35] as they also provide pretrained models156

(Places365-CNN) that we can directly use. 3 Without losing generality, we select 15 place157

types as our candidate class labels. The full list of class labels and their alignment with the158

categories in Places365-CNN is shown in Table 1. For each candidate class, we selected 50159

images taken in 8 states 4 within the US by using Google Maps, Google Street View, and160

Yelp. These images include both indoor and outdoor views of each place type. Please note161

that classifying place types from facade and interior images is a hard problem and even the162

most sophisticated models only distinguish a relatively small number of place types so far163

which is nowhere near the approximately 420 types provided by sources such as Foursquare.164

Places365, for instance, offers 365 classes but many of these are scenes or landscape features,165

such as waves, and not POI type, such as cinemas, in the classical sense.166

3.2 Convolutional Neural Network Models167

To establish baselines for our study, we selected several state-of-the-art image classification168

models, namely deep convolutional neural networks. Unlike traditional image classification169

pipelines, CNNs extract features from images automatically based on the error messages that170

are backpropagated through the network, thus fewer heuristics and less manual labor are171

needed. Contrary to densely connected feedforward neural networks, CNN adopts parameter172

sharing to extract common patterns which help capture translation invariance and creates173

sparse connections which result in fewer parameters and being less prone to overfitting.174

3 https://github.com/CSAILVision/places365/blob/master/categories_places365.txt
4 Arizona, Illinois, Nevada, North Carolina, Ohio, Pennsylvania, South Carolina, and Wisconsin

https://github.com/CSAILVision/places365/blob/master/categories_places365.txt


B. Yan, K. Janowicz, G. Mai, and R. Zhu 18:5

Table 1 Class label alignment between Yelp and the Place365 model.

Class label Places365-CNN category
Amusement Parks amusement_park

Bakeries bakery
Bookstores bookstore
Churches church
Cinema movie_theater

Dance Clubs discotheque
Drugstores drugstore, pharmacy
Hospitals hospital, hospital_room
Hotels hotel, hotel_room
Jewelry jewelry_shop
Libraries library
Museums museum, natural_history_museum, science_museum

Restaurants fastfood_restaurant, restaurant, restaurant_kitchen, restaurant_patio
Shoe Stores shoe_shop

Stadiums & Arenas stadium

The architecture of CNNs has been revised numerous times and has become increasingly175

sophisticated since its first appearance about 30 years ago. These improvements in architecture176

have made CNN more powerful as can be seen in the ImageNet challenge. Some of the177

notable architectures include: LeNet [18], AlexNet [17], VGG [24], Inception [27], ResNet178

[12], and DenseNet [15]. We selected AlexNet, ResNet with 18 layers (ResNet18), ResNet179

with 50 layers (ResNet50), and DenseNet with 161 layers (DenseNet161). AlexNet is among180

the first deep neural networks that increased the classification accuracy on ImageNet by181

a significant amount compared with traditional classification approaches. By using skip182

connections to create residual blocks in the network, ResNet makes it easy to learn identity183

functions that help with the vanishing and exploding gradient problems when the network184

goes deeper. In DenseNet, a dense connectivity pattern is created by connecting every two185

layers so that the error signal can be directly propagated to earlier layers, parameter and186

computational efficiency can be increased, and low complexity features can be maintained187

[15]. These models were trained on 1.8 million images from the Places365-CNN dataset. We188

used the pretrained weights for these models.189

4 Spatial Contextual Information190

In this section, we introduce three different kinds of spatial contexts and explore ways in191

which we can combine them with the CNN models in order to improve image classification.192

The first type of spatial context is spatial relatedness, which measures the extend to which193

different place types relate with each other. The second type of spatial context is spatial194

co-location, which considers what place types tend to co-occur in space and the frequency195

they cluster with each other. The third type of spatial context is spatial sequence pattern196

which considers both spatial relatedness and spatial co-location. In addition, spatial sequence197

pattern considers the interaction between context place types and the inverse relationship198

between distance and contextual influence. We use POIs provided by Yelp as dataset. 5
199

5 https://www.yelp.com/dataset
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4.1 Spatial Relatedness200

Since the output of CNN is the probability score for each class label, it is possible to interpret201

our task as a ranking problem: given an image, rank the candidate class labels based upon202

the visual signal and spatial context signal. For the visual signal, we can obtain the ranking203

scores (probability scores) from the CNN architectures mentioned in Section 3. Since the204

original CNN models has 365 labels, we renormalize the probability scores for each candidate205

place type by the sum of the 15 candidate ranking scores so that they sum up to 1. This206

renormalization procedure is also applied to the other two spatial context methods explained207

in Section 4.2 and Section 4.3. We will refer to the renormalized scores as CNN scores in this208

study. For the spatial context signal, the ranking scores are calculated using the place type209

embeddings proposed in [30]. These embeddings capture the semantics of different place210

types and can be used to measure their similarity and relatedness. In this regard, the task is211

equivalent to a re-ranking problem, which adjusts the initial ranking provided by the visual212

signal using auxiliary knowledge, namely the spatial context signal. Intuitively, the extent213

to which the visual signals from the images match with different place types and the level214

of relevance of the surrounding place types with respect to candidate place types jointly215

determine the final result.216

Inspired by search re-ranking algorithms in information retrieval, we use a Linear Bimodal217

Fusion (LBF) method (here essentially a 2-component convex combination), which linearly218

combines the ranking scores provided by the CNN model and the spatial relatedness scores,219

as shown in Equation 1.220

si = ωvsvi + ωrsri (1)221

where si, svi , and sri are the LBF score, CNN score, and spatial relatedness score for place222

type i respectively, ωv and ωr are the weights for the CNN component and spatial relatedness223

component, and ωv+ωr = 1. The weights here are decided based on the relative performance224

of individual components. Specifically, the weight is determined using Equation 2.225

ωv = accv

accv + accr
(2)226

where accv and accr are the accuracies for CNN and spatial relatedness measurements for227

the image classification task. Intuitively, this means that we have higher confidence if the228

component performs better on its own and want to reflect such confidence using the weight229

in the LBF score.230

In order to calculate the spatial relatedness scores, we use cosine similarity to measure231

the extend to which each candidate class embedding is related with the spatial context232

embedding of an image in a high dimensional geospatial semantic feature space. Following233

the suggestions in [30], we use a concatenated vector of 350 dimensions (i.e., 70D vectors for234

each of 5 distance bins) as the place type embeddings. The candidate class embeddings can235

be retrieved directly. Then we search for the nearest n POIs based on the image location,236

determine the place types of these n POIs, and calculate the average of these place type237

embeddings as the final spatial context embeddings for images. The cosine similarity score238

smi is calculated between the spatial context embedding of an image and the embedding239

of each candidate place type class i. Because smi ranges from -1 to 1, we use min-max240

normalization to scale the values to [0, 1]. Finally, we apply the same renormalization as for241

the CNN score to turn the normalized score sm′
i into probability score, i.e. spatial relatedness242

score sri .243
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Combining these normalizations together with Equation 1 and Equation 2, we are able to244

derive that 0 ≤ si ≤ 1 and
∑N
i=1 si = 1 where N = 15 in our case. This means that the LBF245

score si can be considered a probability score.246

4.2 Spatial Co-location247

The spatial relatedness approach follows the assumption that relatedness implies likelihood248

which is reasonable in cases where similar place types cluster together, such as restaurant,249

bar, and hotel. However, in cases of high spatial heterogeneity, this assumption will fall short250

of correctly capturing the true likelihood. An example would be places of dissimilar types251

that co-occur, e.g., grocery stores and gas stations. Moreover, the LBF method can only252

capture a linear relationship between the two signals.253

Following Berg et al.[2], we also test a Bayesian approach in which we assume there is a254

complex latent distribution of the data that facilitates our classification task. Intuitively,255

the CNN score gives us the probability of each candidate class t given the image I, i.e.,256

P (t|I), and the spatial context informs us of the probability of each candidate class given its257

neighbors c1, c2, c3, ..., cn, denoted as C, around the image location, i.e., P (t|C). We would258

like to obtain the posterior probability of each candidate class given both the image and259

its spatial context, i.e., P (t|I, C). Using Bayes’ theorem, the posterior probability can be260

written as:261

P (t|I, C) = P (I, C|t)P (t)
P (I, C) (3)262

For variables I, C, and t, we construct their dependencies using a simple probabilistic263

graphical model, i.e., Bayesian network, which assumes that both the image I and the spatial264

context C are dependent on the place type t, which intuitively makes sense in that different265

place types will result in different images and different place types of their neighbors. We266

know that given information about the image I we are able to update our beliefs, i.e., the267

probability distributions, about the place type t. In addition, the changes in our beliefs about268

the place type t can influence the probability distributions of the spatial context C. However,269

if place type t is observed, the influence cannot flow between I and C, thus we are able to270

derive the conditional independence of I and C given t. So Equation 3 can be rewritten as:271

P (t|I, C) = P (I|t)P (C|t)P (t)
P (I, C)

= P (t|I)P (I)
P (t)

P (t|C)P (C)
P (t)

P (t)
P (I, C)

∝ P (t|I)
P (t) P (t|C) (4)272

in which we have dropped all the factors that are not dependent on t as they can be considered273

as normalizing constants for our probabilities. It follows that the posterior probability274

P (t|I, C) can be computed using the CNN probability score P (t|I), the spatial context prior275

P (t|C), and the candidate class prior P (t). Instead of estimating the distribution of spatial276

context priors, we take advantage of the spatial co-location patterns and calculate the prior277

probabilities using the Yelp POI data directly. As mentioned earlier, the spatial context278

C is composed of multiple individual context neighbors c1, c2, c3, ..., cn; hence, we need to279

calculate P (t|c1, c2, c3, ..., cn). In order to simplify our calculation, we impose a bag-of-words280

assumption as well as a Naive Bayes assumption in the spatial co-location patterns. The281

bag-of-words assumption simplifies the model by assuming that the position (or the order) in282

GISc ience 2018
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which different context POIs occur does not play a role. The Naive Bayes assumption implies283

that the only relationship is the pair-wise interaction between the candidate place type t284

and an individual neighbor’s place type ci and there is no interaction between neighboring285

places wrt. their types, i.e. (ci |= cj |t) for all ci, cj . Using spatial co-location, we are able to286

calculate the conditional probability using place type co-location counts P (ci|t) = count(ci,t)
count(t)287

where count(ci, t) is the frequency that neighbor type ci and candidate type t co-locate288

within a certain distance limit and count(t) is the frequency of candidate type t in the study289

area. Combining all these components, we can derive:290

P (t|C) = P (t|c1, c2, ..., cn)

=
P (t)

∏n
i=1 P (ci|t)

P (c1, c2, c3, ..., cn)

= P (t)
P (c1, c2, c3, ..., cn)

∏n
i=1 count(ci, t)
count(t)n (5)291

Using Equation 4 and Equation 5, we can derive the final formula for calculating P (t|I, C)292

shown in Equation 6. For the sake of numerical stability, we calculate the log probability293

logP (t|I, C) using the natural logarithm. Since the natural logarithm is a monotonically294

increasing function, it will not affect the final ranking of the classification results.295

logP (t|I, C) ∝ log
(
P (t|I)
P (t) P (t|C)

)
= log

(
P (t|I)

P (c1, c2, c3, ..., cn)

∏n
i=1 count(ci, t)
count(t)n

)
∝ logP (t|I) +

n∑
i=1

log(count(ci, t))− nlog(count(t)) (6)296

where we also drop P (c1, c2, c3, ..., cn) as it does not depend on t, so it will not affect the297

result ranking. The log posterior probability is then used to generate the final ranking of298

candidate place types and produce the classification results.299

4.3 Spatial Sequence Pattern300

The spatial co-location approach follows the bag-of-words assumption that the position of301

spatial context POIs does not matter and the Naive Bayes assumption that the context302

neighbors are independent of each other. However, in many cases this assumption is too303

strong. In fact, numerous methods, such as Kriging and multiple-point geostatistics, have304

been devised to model geospatial proximity patterns and complex spatial interaction patterns.305

However, incorporating these complex spatial patterns in a multidimensional space would306

adversely affect the model complexity and make the distribution in Section 4.2 intractable.307

In order to strike the right balance between the complexity of model and the integrity of308

spatial context pattern, we propose to capture the spatial sequence pattern in our model by309

collapsing the 2D geographic space into a 1D sequence.310

Specifically, we use the Long Short-Term Memory (LSTM) network model, a variant of311

recurrent neural network (RNN), in our study. Recurrent neural networks are frequently312

used models to capture the patterns in sequence or time series data. In theory, the naive313

recurrent neural networks can capture long term dependencies in the sequence, however,314

due to the vanishing and exploding gradient problem, they fail to do so in practice. LSTM315

is explicitly designed to solve the problem by maintaining a cell state and controlling the316
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Figure 1 Structure of the LSTM.

input and output flow using forget gate, input gate, and output gate [14]. We use LSTM317

as a generative model in order to capture the latent distribution of place types using the318

spatial sequence pattern. In the training stage, the input is a sequence of context place319

types c1, c2, c3, ..., cn and the output is the place type t of the POI from which the context is320

created. The input sequence is ordered in a way so that the previous one is further away321

from the output than the next one in the collapsed 1D space. Image one would drive around322

a neighborhood before reaching a destination. For each of the POIs encountered during the323

route, one would update the beliefs about the neighborhood by considering the current POI324

and all previously seen POIs. Upon arriving at the destination, one would have a reasonable325

chance of guessing this final POI’s type. The structure of the LSTM model is shown in326

Figure 1. We apply a dropout after the LSTM layer to avoid overfitting. After training327

the LSTM model on Yelp’s POI dataset, we are able to obtain the spatial context prior328

P (t|c1, c2, c3, ..., cn) based on the spatial sequence pattern around the image locations in our329

test data. We specifically removed the image locations and their context in the training data.330

Similar to the spatial co-location approach, we use Bayesian inference and log probability to331

calculate the final result:332

logP (t|I, C) ∝ log
(
P (t|I)
P (t) P (t|C)

)
= logP (t|I) + logP (t|c1, c2, c3, ..., cn)− logP (t) (7)333

where the candidate class prior P (t) can be computed using the Yelp data. Since we use LSTM334

as a generative model, in the prediction phase, sampling strategies, such as greedy search,335

beam search, and random sampling, can be applied based on the distribution provided336

by the output of the LSTM prediction. However, we only generate the next prediction337

instead of a sequence, so we do not apply these sampling strategies. Instead, we make use of338

the hyperparameter temperature τ to adjust the probability scores returned by the LSTM339

model before combining them with the CNN model in a Bayesian manner. Including the340

hyperparameter τ , the softmax function in the LSTM model can be written as:341

P (ti|C) =
exp( logitiτ )∑N
j=1 exp(

logitj
τ )

(8)342

where logiti is the logit output provided by LSTM before applying the softmax function and343

N = 15 in our case. Intuitively, when the temperature τ is high, i.e., τ →∞, the probability344

distribution will become diffuse and P (ti|C) will have almost the same value for different ti;345

when τ is low, i.e., τ → 0+, the distribution becomes peaky and the largest logiti stands346

out to have a probability close to 1. This idea is closely related to the exploration and347

exploitation trade-off in many machine learning problems. The value of τ will affect the348

probability scores P (ti|C) but not the ranking of these probabilities.349
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In this study, we propose two ways to model the 2D geographic space as a 1D sequence.350

The first one is a distance-based ordering approach. For any given POI, we search for nearby351

POIs within a certain distance from it, choose the closest n POIs, and rearrange them by352

distance with descending order, thereby forming a 1D array. This distance-based method is353

isotropic in that it does not differentiate between directions while creating the sequence. The354

second method is a space filling curve-based approach. We utilize Morton order here which355

is also used in geohashing to encode coordinates into an indexing string that can preserve356

the locality of spatial locations. We use Morton order to encode the geographic locations of357

every POI and order them in a sequence based upon their encodings, i.e., indexing sequence.358

After obtaining the sequence, for each POI, we use the previous n POI in the sequence as359

the context sequence. Other space filling curves could be used in future work.360

Because each POI can have multiple place types associated with it, e.g., restaurant and361

beer garden, the sequence of place types is usually not unique for the same sequence of POIs.362

As our LSTM input is a sequence of place types, we compute the Cartesian product of all363

POI type sets in the sequence of nearby places:364

Tc1 × Tc2 × Tc3 × ...× Tcn = {(tc1 , tc2 , tc3 , ..., tcn)|∀i = 1, 2, 3, ..., n, tci ∈ Tci} (9)365

where Tci
is the set of place types associated with POI ci in the context sequence. In366

practice, however, we randomly sample a fixed number of place type sequences from each367

of the Cartesian product for the POI context sequence as the potential combinations grow368

exponentially with increasing context size.369

5 Experiment and Result370

In this section, we explain our experimental setup for the models described above, describe371

the metrics used to compare the model performance for place type image classification, and372

present the results and findings.373

5.1 Implementation Details374

For all three types of spatial context, we use 10 as the maximum number of context POIs375

and a distance limit of 1000m for the context POI search. For the spatial sequence pattern376

approach, we use a fixed sample size of 50 to sample from the Cartesian product of all POI377

type sets in the sequence. 6 We use a one-layer LSTM with 64 hidden units. We train our378

LSTM model using the recommended Root Mean Square Propagation (RMSProp) optimizer379

with a learning rate of 0.005. A dropout ratio of 0.2 is applied in the LSTM and we run380

100 epochs. The same settings are used for all LSTM trainings in our experiment. The381

total number of POI in the dataset is 115,532, yielding more than 5 million unique training382

sequences.383

For evaluation, we use three different metrics, namely Mean Reciprocal Rank (MRR),384

Accuracy@1, and Accuracy@5. Another common metric for image classification would also385

be Mean Average Precision (MAP), but since there is only one true label per type in our386

task, we use MMR instead.387

6 The median for types per place in Yelp is 3.
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5.2 Results388

We run the 750 test images we collected, i.e., 50 images per each of 15 types, on the four CNN389

baseline models (AlexNet, ResNet18, ResNet50, and DenseNet161) as well as the combined390

models using our three different types of spatial context. 7 In addition to the two methods391

for converting geographic space into 1D sequences in the spatial sequence pattern approach,392

we also test one model using random sequences with the same context count and distance393

limits. We did so to study whether results obtained using the LSTM would benefit from394

distance-based spatial contexts. A higher result for the spatial sequence based LSTM over395

the random LSTM would indicate that the network indeed picked up on the distance signal.396

The hyperparameter τ can be adjusted; a value of 0.5 has been proposed as a good choice397

before. In order to test this and find the optimal temperature value, we run the combined398

model using spatial sequence patterns with three types of sequencing approaches, namely399

random sequence, distance-based sequence, and Morton order-based sequence.400

Figure 2 From left to right, MRR result using distance-based sequence, random sequence, and
Morton code-based sequence with varying temperatures

We test temperature values ranging from 0.01 to 2 with a step of 0.01. We combine401

the spatial sequence pattern models with all CNN models. The MRR result with respect402

to temperature are shown in Figure 2. Although there are a slight variations, the MRR403

curves all reach their peaks around a τ value of 0.5. This confirms the suggestion from the404

literature. Figure 3 shows selected example predictions. The results for MRR, Accuracy@1,405

and Accuracy@5 using the baseline models as well as our proposed, spatially explicit models406

are shown in Table 2, Table 3, and Table 4. 8
407

As we can see, by incorporating spatial context in the image classification model, we are408

able to improve the classification result in general. However, integrating spatial relatedness409

using the LBF method does not seem to affect the result. This essentially confirms our410

aforementioned assumption that relatedness does not always imply likelihood. The benefit of411

incorporating spatial relatedness in cases of spatial homogeneity are likely to be offset by412

cases of hight spatial heterogeneity in which spatial relatedness may have an negative effect413

as dissimilar places co-occur.414

7 Transfer learning could be applied to fine tune the CNN models first, but we only have limited images
and our hypothesis is that spatial context can be used as a powerful complement or alternative to the
visual component for image classification.

8 The baseline models are not comparable with a random classifier which would yield an expected accuracy
of 1/15 in this case, because the baseline CNN models have 365 unique labels and we choose 15 labels
in our experiment.

GISc ience 2018



18:12 xNet+SC: Classifying Places Based on Images by Incorporating Spatial Contexts

Figure 3 From left to right, images of a restaurant, a hotel, and a museum from Yelp, Google
Street View, and Google Maps respectively. The first image is incorrectly classified as library using
all 4 CNN models and it is correctly classified as restaurant using the spatial sequence pattern
(distance) models. The second image is classified as hospital and library by the original CNN models
and is classified as hotel by the spatial sequence pattern (distance) models. For the third image the
correct label museum is in the third position in the label rankings of all 4 CNN models while, using
the spatial sequence pattern (distance) models, ResNet18 and ResNet50 can correctly label it and in
the label rankings of AlexNet and DenseNet161 museum is in the second position.

Table 2 MRR result using baseline models and proposed combination models using different
types of spatial context and sequences

MRR AlexNet ResNet18 ResNet50 DenseNet161
Baseline 0.27 0.28 0.31 0.31

Relatedness 0.27 0.28 0.31 0.32
Co-location 0.30 0.31 0.31 0.32

Sequence Pattern (Random) 0.38 0.40 0.42 0.42
Sequence Pattern (Distance) 0.41 0.42 0.44 0.44

Sequence Pattern (Morton order) 0.39 0.42 0.43 0.43

The Accuracy@1 measurement is improved by incorporating spatial co-location component415

in the models. This confirms our previous reasoning that considering the external signal,416

namely spatial contexts, and assuming a complex latent distribution of the data in a Bayesian417

manner improve image classification. However, for MRR the improvement is marginal and418

for Accuracy@5 there even is a decrease after incorporating the spatial co-location component419

because this type of spatial context falls short of taking into account the intricate interactions420

of different context neighbors. This shortcoming is not clear when only looking at the first421

few results in the ranking returned by the combined models, but it becomes clearer in later422

results in the ranking output, thus resulting in a decrease for Accuracy@5 and only a slight423

increase in the MRR measurement.424

Table 3 Accuracy@1 result using baseline models and proposed combination models using
different types of spatial context and sequences

Accuracy@1 AlexNet ResNet18 ResNet50 DenseNet161
Baseline 0.07 0.07 0.09 0.09

Relatedness 0.07 0.07 0.09 0.09
Co-location 0.15 0.17 0.17 0.17

Sequence Pattern (Random) 0.18 0.18 0.19 0.20
Sequence Pattern (Distance) 0.20 0.20 0.22 0.22

Sequence Pattern (Morton order) 0.19 0.20 0.22 0.22

The Bayesian combination model using spatial sequence patterns shows better overall425

results compared with the baseline models, the spatial relatedness model, and the spatial426
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Table 4 Accuracy@5 result using baseline models and proposed combination models using
different types of spatial context and sequences

Accuracy@5 AlexNet ResNet18 ResNet50 DenseNet161
Baseline 0.50 0.56 0.59 0.60

Relatedness 0.52 0.56 0.58 0.59
Co-location 0.42 0.44 0.45 0.44

Sequence Pattern (Random) 0.65 0.69 0.73 0.73
Sequence Pattern (Distance) 0.67 0.70 0.73 0.75

Sequence Pattern (Morton order) 0.65 0.70 0.72 0.71

co-location model. This is because the spatial sequence patterns capture spatial interactions427

between the neighboring POIs that are neglected by the other models. From the result we428

can see that using a distance-based sequence is better than using a random sequence. To429

prevent confusion and to understand why the random model still performs relatively well, it430

is important to remember that this model utilizes spatial context. However, it does not utilize431

the distance signal within this context but merely the presence of neighboring POI. The432

results show that a richer spatially explicit context, one that comes with a notion of distance433

decay, indeed improves classification results. Interestingly, the sequence using Morton order,434

which is widely used in geohashing techniques, does not further improve the result compared435

to the distance-based sequence. There may be multiple reasons for this. First, we may have436

reached a ceiling of possible improvements by incorporating spatial contexts. Second, our437

Morton order implementation takes the 10 places that precede the target place in the index.438

This may result in directional effects. Finally, all space filling curves essentially introduce439

different ways to preserve local neighborhoods; utilizing another technique such as Hilbert440

curves may yield different results. Given that the Morton order-based sequence in many441

cases yield results of equal quality to the distance-based sequences, further work is needed to442

test the aforementioned ideas.443

Summing up, the results demonstrate that incorporating a (distance-based) spatial context444

improves the MRR of state-of-the-art image classification systems by over 40%. The results445

for Accuracy@1 are more than doubled which is of particular importance for humans as446

this measure only considers the first ranked result.447

6 Conclusion and Future Work448

In this work, we demonstrated that utilizing spatial contexts for classifying places based on449

images of their facades and interiors leads to substantial improvements, e.g., increasing MRR450

by over 40% and doubling Accuracy@1, compared to applying state-of-the-art computer451

vision models such as ResNet50 and DenseNet161 alone. These advances are especially452

significant as the classification of places based on their images remains a hard problem. One453

could argue that our proposal requires additional information, namely about the types of454

nearby places. However, such data are readily available for POI, and only a few nearby places455

are needed. Secondly, and as a task for future work, one could also modify our methods456

to work in a drive-by-typing mode in which previously seen places are classified, and these457

classification results together with their associated classification uncertainty are used to458

improve estimation of the currently seen place, thereby relaxing the need for POI datasets. In459

the future, we would like to apply transfer learning and experiment with other ways to encode460

spatial contexts, e.g., by testing different space-filling curves. We plan to develop models to461

directly capture 2D spatial patterns rather than using a 1D sequence as a proxy and test462
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whether spatial contexts also aid in recognizing objects beyond places and their facades.463
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