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Today’s Topic 
 

Geographical Movement 

is critically important. 
 

This is because much change in the world is due to 
geographical movement. 

 
The movement of 

ideas, people, disease, money, energy, material, etc. 
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My talk is structured as follows 

 
First I will show a few movement maps 

 
Then I will comment on a program to produce simple movement maps 

 
Following this are some remarks on models of movement 

 
 I next extend one model to the spatially continuous case 

 
 This will be used to present an example of the movement of money  

 
and one of people migrating in the United States 
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An Exciting Movement Map 
World Soccer Final: Italy against France 
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Global Oil Flow 
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Movement from Katrina 
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Stork migration 
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Monarch Butterfly Patterns 
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Average daily taxi trafic in London 
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Daily journey to work around Detroit 
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Minard’s famous map 
Napoleon’s march and retreat from Russia 
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 Movement Tables 

 
 
A typical description of movement comes in the form of an array of estimated numbers 

giving the quantity of movement between known areas. Increasingly often these 
arrays are large and thus difficult to comprehend in all their detail. One approach to 
this problem is graphical displays. 

This graphical approach is via geographical movement maps, a tradition going back to 
Charles Minard in the 19th century, but now up-dated to include rapid, simple, and 
informative interactive computer renditions. A few such maps will be presented. 

My original training was in geographical and mathematical cartography. But I find that 
too many maps are static depictions.  

I particularly abhor choropleth maps. 
Therefore I have spent more time since the 1970’s studying movement. 

This is the reason for work on a flow mapping program.  
The program can be downloaded from 

CSISS.ORG/ SPATIAL TOOLS/ FLOW MAPPER 
It’s free and comes with a tutorial.  
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As you know much of computer 
Cartography is a Dot-to-Dot 
Just replace the dots by coordinates. 
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U.S. Migration 
1965-1970 

Map produced by a flow mapping program 
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Showing the majority of inter-provincial moves in China 
Using the flow mapper program 
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Another map made using the flow mapper program 

Movement between French Regions 
Data courtesy of Mr. C. Calzada of Paris 
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Some nice properties of the Flow Mapper program 
Simple and quick flow map preparation - GIS Not Needed! 
Extensive color styles available. Black & white too. 
Hovering over a band or arrow gives the magnitude. 
Hovering over a centroid gives its label. 
Two-way, total, or net movement maps. 
Many to many, one to many, or many to one maps. 
Easy threshold choice. Some statistics made available. 
Size dependant only on memory availability. 
Multiple output formats. 
Non-geographic flows within firms, industries, organizations, too. 
Help file included. 

Microsoft Windows compatible. 
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What can one do with data like this? 
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Marital Selection in Seattle 
R. Morrill, F. Pitts, 1967, Annals, AAG, (57,2 , 401-422) 
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Slide all trips to a central point, keeping their directions fixed, and 
measure distances. 
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Store Customers 
(From an ESRI business program) 
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Display end points in distance rings, estimate densities, 
generate histogram. Produce probabilities. 
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Sort by distance to see distance decay. 
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The friction of distance 
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There are several simple implications of this ‘friction’ 
as shown by the distance decline. 

One is to define trade areas or areas of influence. 
 

Another implication is the ability to estimate movement 
(migration, communication, etc.) between places.  

 
Construct mean information fields for Markov simulations. 

 
Or consider two places at different locations: where the curves 

cross (intersect) is the place of equal influence.  
 

This is easily extended to the spatial case of influence zones 
and leads, inter alia, to central place theory. 
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Central Places in Southern Germany  
After Christaller 
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Geographers, sociologists, economists, regional 
scientists, and others, have used models to take these 

distance effects into account.  
Most common is the so-called gravity model. 

 
In this model the movement from place i to place j is proportional 

to the sizes of the places and inversely proportional to the 
distance between the places: 

Mij= kPiPj/dij.  
 

Use is also made of the entropy variant: 
Mij= kAiBjOiDj exp(-ß dij). 
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How well does it predict? 
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These models have long been used by geographers to 
estimate parameters relating to migration.

There is a very large literature on these simple models.

These are mutiplicative models. Thus it is difficult to aggregate either areas or populations.

The ‘gravity’ model uses only distances and populations.
Gravity model: Mij = kPiPj/dβij

ln Mij = ln k + ln Pi + ln Pj + ß ln dij

How well does it work?  Typical R2s are better than 0.8

The ‘entropy’ model uses distances and needs an estimated total cost constraint. 
Entropy Model: Mij = AiBjOiIjexp(ßdij)

This model is estimated using an iteration on balancing factors A and B. 
It is often used with previous data and for forecasting.

Both models can make estimates when given only table marginals. 52
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Continuing with modeling 
A common technique used to “explain” migration is a 

multiple regression. 
Mij = βX + ε 

 β is a vector of  estimates relating to the several postulated “causes” X.  
The error term ε is minimized by the least squares technique. 

 
Some of the many “causes” are properties of the ith place, others of the jth place, others 

are of the differences between the places. 
Here properties of the migrants themselves are typically not modeled. Instead different 

regressions are applied to difference classes of movers. 
 

The list of the causes (X’s) is chosen in advance, on the basis of some theoretical 
conjectures, is often rather long, but can never be exhaustive. 

 
Also notice that no spatial auto-correlation is assumed in the above equation. 

Thus one version of an alternate model would need to be written as  
Mij = RhoWX +βX +ε 

 
But we can show a map that provides clear evidence of auto-correlation. 
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There is a great deal of spatial coherence in migration 
patterns 

   In the US case the state boundaries hide the effect,  
therefore they should be omitted. 

 
 

There is also temporal coherence. 

 
 

W. Tobler, 1995, “Migration: Ravenstein, Thornthwaite, and Beyond”, Urban Geography, 16(4):
327-343. 
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Gaining and loosing states. 
Based on the marginals of a 48 by 48 state migration table. 

1965-1970 data 
 The arrangement of leaving and arriving places shows spatial coherence. 

It is clear from this map that states are not the appropriate size for migration studies. 
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Net Migration in the United States 
Migration patterns persist for a long time. 

Thus there is temporal coherence (auto-correlation) . 
 

1985-1990                                     1995-2000 
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Migration Patterns Persist 
the Netherlands 

1984                          1994 
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 Why do people migrate? 
 A reference is P.N. Ritchey, 1976, “Explanations of Migration”, Annual Review of Sociology, 363-404. 

 Migrants move for many reasons, some obvious, some idiosyncratic.  
The US Census bureau gives a 68 by 20 table by classes of individuals with 20 reasons for moving,. The last is “other.” 

 
The model to be described abstracts from specific reasons and asserts that migration 

results from some dissatisfaction, discouragement, rejection repulsion, or push ! 
from one’s current location and an offer, opportunity, allure, temptation, 
fascination, enticement, or pull ☺ from some other region. 

 
All modulated by the difficulty of transferring from one place to another.  

 
 As described earlier an often used strategy is to postulate ‘reasons’ in advance for 

the moves, or to specify attributes of the places thought to influence migration.  
 

Then parameter estimates are made using a regression model, with its limitations.  
Here something different is done!  

 
Pushes (!) and pulls (☺) are are not chosen in advance but rather are estimated 

from the actual migration. The challenge is then to compare these calculated 
pushes and pulls to values of postulates. 
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The form of the movement tables 
Mij 

In the case of migration from place i to place j these are square non-symmetric tables 
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Derivation of a particular model of migration. 
Among the mathematical analyses briefly mentioned are the gravity and entropy 

models. Here I wish to consider another, less frequently used, model: 
known as the Quadratic Transportation Problem (QTP). 

  
This model is set up as an optimization. 

It is generally solved by numerical iteration techniques. 
 

We are dealing with a flow table describing Mij that indicates the movement between 
places i and j. 

Particularly important are the marginal sums since these are all that is used in the 
model.  

But the distances between the places are also assumed to be known. 
 

In this model flows are rendered more reliable by a diversity of moves, 
traffic is diverted to avoid congestion, and  

 migration patterns are rendered diffuse due to information inadequacies.  
 
The quadratic model has another property that is worth mentioning: The additive nature 

allows separate computation by, say, age groups, to sum to the correct total. 
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The model used is known as 

55

The Quadratic Transportation Problem
Mij is movement from i to j, Dij is cost, r = rows, c=columns, n=r*c.

The objective function is to minimize

r    c

Σ Σ M2
ijDij

i=1 j=1

subject to n

Σj=1 Mij= Oi (outsum)

and n

Σi=1 Mij = Ij (insum) 

and

r c

Mij ≥ 0,   Σi=1 Oi = Σj=1 Ij
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With Lagrangian multipliers the QTP becomes 
                 r        c                r                         c                         c                      r 

Min ε2 = Σi=1 Σj=1 M2
ijDij + Σi=1Ri(Oi - Σj=1Mij) + Σj=1Ej(Ij - Σi=1Mij) 

     
Setting the appropriate derivatives to zero yields 

    
 Mij = ½ (Ri + Ej) / Dij  

 
Observe that this is an additive model, whose parameters still need to be calculated. 

 
 The model says that: 

 Movement from i to j equals 
Push from i, plus Pull from j, both divided by distance between i and j, 
using R for ‘repulsing’ (! = push) and E for ‘enticing’ (☺ = pull).  

 
For the complete derivation see  

G. Dorigo, W. Tobler, 1983, “Push Pull Migration Laws”, Annals, Association of American 
Geographers, 73(1): 1-17. 
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The solution, in equation form, is Mij = (Ri + Ej) / Dij  
 

The model says that Movement from i to j equals Push from i, plus Pull from j, both divided by Distance 
between i and j, using R for ‘repulsing’ (! = push) and E for ‘enticing’ (☺ = pull). 

 
Here the movement (M) takes place between regions, N in number, indexed by i and j. The pushes (!i) and 

pulls (☺j) are numerical quantities that are estimated in the model.  
The cost of movement from location i to location j is contained in the dij term for which great circle or road 

distance is often an adequate surrogate. 
 

The estimated quantities are real numbers which can be positive or negative.  
 

There are as many simultaneous equations as movements.  
 

The equations are coupled so that a minor change in one push, or pull, or distance, changes all of the others.  
 

But these individual changes are typically small and reflect the sluggishness, or persistence, in the table  
and this is also the situation in real migration systems. 

 
  Using A = E - R for the “Attractivity” and T= E + R for the “Turnover” yields further important numbers 

for each pair of places i and j. 
 

For the complete derivation see  
G. Dorigo, W. Tobler, 1983, “Push Pull Migration Laws”, Annals, Association of American Geographers, 73(1): 1-17. 
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The Lagrangians are obtained from a pair of  
simultaneous equations, one for each location. 

              c                 c 
Ri Σj=11/Dij + Σj=1 Ej/Dij = 2 Oi 

                               r                       r 
Σi=1 Ri/Dij + Ei Σi=1 1/Dij = 2 Ij 

     
 With E (“pulls” ☺ ) and R (“pushes” ! ) as parameters.  These simultaneous 

equations can be solved for the pushes and pulls. 
These are real numbers which can be positive or negative.  

There are as many simultaneous equations as places.  
The equations are coupled so that a minor change in one push, or pull, or distance, 

changes all of the others. But the consequent changes are typically small and 
reflect the sluggishness, or persistence, in the table and this is also the situation 

in real migration systems. 
  Using A = E - R for the “Attractivity” and T= E + R for the “Turnover” yields 

further important numbers for each pair of places i and j. 
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The model works like this: 
For migration in some geographic area,   

given 
the out-movements (row sums),  

the in-movements (column sums),  
and the distances between the places,  

the algebra then allows the computation of the full table.  
 

This can then be compared to the actual values, if known. 
 

But, it also gives numerical estimates for the  
pushes,  
pulls,  

attractivity,  
and turnover. 

 
 
 
 



43 

An example 

Three Estimates of the 1985-1990 Inter-provincial 
Migration in China made using the qtp Model 

The three model versions are  
 

1)   Mij = (Pushi + Pullj) / dij 
Normal model (R2 = 0.57) 

 

2)   Mij = (Popi * Popj)*(Pushi + Pullj) / dij 
Using the populations (R2 = 0.59) 

 
3)   Mij = (Oi * Ij)*(Pushi + Pullj) / dij 

Modulated by the marginals (R2 = .65) 
 

All three models preserve the mean of 1,325,000 migrants and the table marginals.  
The computer program used can also use an exponent on the distances,  

but this has not been done here.  
Border lengths between areas may be used instead of distances. 

The fit of these models to the actual empirical migration table is given by the 
correlations. 
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Model estimate to be compared to the actual 

Migration in China estimated by the QTP model 
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Some more advanced materials. 
 

Instead of using a discrete model, consider a geographically continuous 
representation. 

 
 

That is, imagine that the number of places increases almost without 
bound. 

 
 

Then do some interpolation of the data to obtain a continuous field. 
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Four ways of representing geographic space in a 
continuous fashion for movement studies are: 

Writing scalar values as continuous functions of latitude and longitude (or rectangular 
or polar plane coordinates), perhaps estimated by least squares, as two dimensional 
algebraic or trigonometric polynomials, splines, eigenfunctions, or spherical 
harmonics or wavelets. This can be considered as an elaboration of spatial trend 
analysis. See:  

S. Angel, G. Hyman, 1976, Urban Fields, Pion, London. 
W. Tobler, 1969, Geographic filters and their inverses, Geographical Analysis, 1:234-253 
W. Tobler, 1992, Preliminary representation of  world population by spherical harmonics, Proc. Natl. Acad, Sci USA , 89: 

6262-6264. 
T. Puu, M. Beckmann, 2003, “Continuous Space Modelling”, 279-320, of R.Hall, Ed., Handbook of Transportation Science, 

2nd ed.,Kluwer, Boston. 
 

Writing vector fields, or interaction data, in a similar fashion as a four dimensional 
spline or polynomial function of the origin & destination location coordinates, or 
using complex variables. See: 

P. Slater, 1993, “International Migration & Air Travel: Smoothing & Estimation” Appl. Math. & Comp., 53: 225-234 
 

Expanding regression coefficients in a geographically weighted manner. See 
J. Jones, E. Casetti, 1992, Applications of the expansion method, Routledge, London 
S. Fotheringham, et al, 2002 , Geographically weighted regression, Wiley, Chichester. 

 

Approximation by a two dimensional lattice (raster), as in the present study. 
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A spatially continuous model. 

Extension of quadratic transportation problem model leads to 
a class of spatially continuous potential fields providing 
estimates of attractivity and turnover, and leading to 
innovative vector field displays.  

 
The potentials are calculated by solving finite difference 

versions of Poisson’s equation from geographically 
distributed migration table marginals.  

 
The linear nature of the model allows easy additive 

superimposition when estimating attribute components. 
 

The details follow. 
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The necessary steps for a US map. 

The model is set up on the basis of interpolating both the total 
sources (out-flows) and sinks (in-flows) for the contiguous US.  

 
To carry out this operation first ‘rasterize’ the region of interest 

into a large set of equally spaced nodes.  
 

Assign the total values to the nodes for the computation. 
Take the difference to get the net change.  

 
Then the potential is computed.  

 
The gradient field is obtained from this potential field. 

 
This is illustrated on the next several slides for  movement of 

money in the United States. 
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 Example 

In the United States the currency 
indicates where it was issued. 

For bills this is the Federal Reserve District. 
The new quarters refer to a state. 

Coins also contain a mint abbreviation. 
 

Check your wallet to estimate your interaction with the 
rest of the country! 

[In Europe use the Euro coins for cross-country estimates.] 
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Dollar Bill 
(Federal Reserve Note) 

Issued by the 8th  (St. Louis) Federal Reserve District. 
(H is the 8th letter of the alphabet) 
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The 12 Federal Reserve Districts 
(Alaska and Hawaii omitted) 
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A Table of Dollar Bill Movements 

was obtained from MacDonalds outlets throughout the 
United States.  

 
Source: S. Pignatello, 1977, Mathematical Modeling for Management of 

the Quality of Circulating Currency, Federal Reserve Bank, 
Philadelphia 

 

From the table we can compute a movement map. 
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                  Movement of One Dollar Notes                                       
  between Federal Reserve Districts, in hundreds, Feb. 1976 
    

                             To:   B    NY   P    Cl    R    A   Ch   SL   M    K    D    SF 
From:       Boston 

New York 
Philadelphia 

Cleveland 
Richmond 

Atlanta 
Chicago 

St. Louis 
Minneapolis 
Kansas City 

Dallas 
San Francisco 
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Dollar moves between FRB centroids. 
A conventional map, but we want a continuous field map. 
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First the Federal Reserve Districts Are “Rasterized” 

There will be one finite difference equation for each node on this raster 
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Now spread the total in and out dollar moves from 
each Federal Reserve District to all cells within the 

district. 

Spread these moves in a rather even fashion. 
Then subtract the outs from the ins to get the net 

change in the dollars for every cell. 
Lots of cells will get plus signs (dollars arriving) and 

lots will get minus signs (dollars leaving). 
Think of the minus signs as high hills and the plus 

signs as valleys. 
Now let the dollar amounts trickle down from the 

hills into the valleys, somewhat like topography 
eroding, to get the next map.     
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Here the ‘hills’ are shown by contours 
and the direction of flow by the slope vectors 

    The raster is indicated by the tick marks. The arrows are the gradients to the potentials. The 
streakline map is then obtained by connecting the gradient vectors.  
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Now we can represent the flow of dollar bills 
in the U.S. by a continuous field. 

Spatially coherent structures in the movement. 
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The flowing model just described is really only an 
analogy of what the equations do. 

The map is actually computed using a continuous version of 
the push-pull model 

The result is a system of partial differential equations solved 
by a finite difference iteration to obtain the potential field. 

This can be contoured and its gradient computed and drawn on 
a map, as has just been shown. 

Some of the analysis details will now be described. 
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Now I show how to derive the continuous version of 
the Push-Pull model that was earlier illustrated.  

In the discrete case there is one equation for every pair of places:  
Mij = (Ri + Ej) / Dij 

 obtained by solving the simultaneous pair for the Lagrangians: 

                         c                  c 
RiΣj-1 1/ Dij + Σj=1 Ej / Dij = 2 Oi 

        r                         r 
Σi=1 Ri / Dij + Ei Σi=1 1/ Dij = 2 Ij 

   
The  E (‘pulls’ ☺) and R (‘pushes’ !) are the Lagrangians.   

      
 These simultaneous equations are solved for the pushes and pulls. 

 
       Also obtained were the ‘Attractivity’ A = E - R and the ‘Turnover’ T= E + R. 
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In the raster look at one node and its neighbors 
 A raster is a special kind of network where movement takes place between neighboring nodes 
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The simple derivation 
Recall that in this model Mij = (Ri + Ej) / Dij 
 For the square mesh take all Dij to be the same. Set them equal to 1. 

The model is now Mij = Ri + Ej  Use the subscript 0 for the center 
node (i=0), and index the neighbor nodes from 1 to 4.  

Then the moves from the center to the neighbors is 
 M01 = R0 + E1 

 M02 = R0 + E2 
 M03 = R0 + E3 

 M04 = R0 + E4 
           -------------------------- 

          M0j = 4 R0 + E1 + E2 + E3 + E4 
 

But M0j are the moves out of node 0, and this is Oj the Outsum. 
In the same way M10 = R1 + E0 , etc for M20, M30, M40.  
These are the moves into node 0 from the neighbors, and this is Ii. 
Thus the pair of equations become 

 Oj = 4 R + E1 + E2 + E3 + E4 
  Ii = 4 E + R1 + R2 + R3 + R4 

after dropping the subscript for the central node.  
There is one pair of  equations for each node. 
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An aside: 
 Incorporating differential transport disutilities into the model. 

From the previous slide we can insert a differential transport weight 
factor into the movement, as follows: 

M01 = R0 + E1 becomes = (R0 + E1)/W01 where W01 is the equivalent of 
d01 but more realistic (for example road distance, or travel time or 

cost). Then similarly for all M0j. 

Now do the same for M10  inserting a W10, etc. Recognize that W01 is not 
the same as W10  and that the link weights will be different across 
every edge, and that they may change rapidly with time. Adjacent 
cells will naturally have two common, but differentially directed, link 
values.  

It might be helpful to draw and label weights for a system of nine cells. 
Doing this naturally leads to a rather more complicated system of 

equations. 
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(aside continued) 
 
As a result: 

R0 = [Oj - (Σ Ei/W0i)] / Σ (1/W0i)            
 

E0 = [Ii  - (Σ Rj/Wj0) ] / Σ (1/Wj0) 

The summations are over k = 1 to 4  
All Wij  and Ii and Oj are assumed known. 
The same set of equations hold for all cells except those on the 
 borders of the region. 
Known are 2 W’s per edge + 2*I*O - 1 in and outsums (I’s and O’s)  
minus 4*(I + O) (Dirichelet or Neumann) values at the edges.  
Unknown are 2*R*E pushes (R‘s) and pulls (E’s).  
Can this system be solved for all R’s and E’s? 
(end of the aside) 
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The distance values Dij, as constants, have been dropped in the square mesh, for                 
pedagogic purposes, but not a mathematical necessity. As suggested differential 
transportation can be included but complicates the model and is thus omitted here  
Each place, except along the margins of the region, will have four neighbors. Now 
the quadratic equations can be greatly simplified. 

Just derived were the two equations at each node: 
                    4E = I - (R1 + R2 + R3 + R4),      4R = O - (E1 + E2 + E3 + E4). 

 The central E and R require no subscript; their neighboring locations are indexed 
from one to four - or if you wish - North, South, East, and West directions.   

 Now add - 4R to both sides of the first equation and - 4E to both sides of the second, 
rearrange slightly, and using T = E + R, to obtain 

             R1 + R2  + R3  + R4  - 4R = I - 4T,          E1 + E2 + E3 + E4  - 4E = O - 4T, 
 The left-hand sides are recognized as finite difference versions of the Laplacian.  
 Thus we can write, approximately and for a limiting uniform fine mesh, the pair 

     ∂2R/∂u2 + ∂2R/∂v2  = I(u,v) - 4T(u,v),    
∂2E/∂u2 + ∂2E/∂v2 = O(u,v) - 4T(u,v), 

assuming that R and E are differentiable spatial functions and that I and O are 
continuous densities given as functions of the cartesian coordinates u and v. 
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   In the discrete system there is one equation for every pair of places. On 
the mesh there are two equations for every node. We have just derived a 

continuous version of the quadratic model.  
       In this continuous version, we have a coupled system of two simultaneous partial 

differential equations covering the entire region. These equations can be combined to 
yield either gross movements or net movements.  

       For the simultaneous movement in both directions at each pair of places add the 
two equations to get the ‘turnover’ potential. The result is Helmholtz’s equation. 

       For the net movement we need only the difference between the ‘in’ and ‘out’ at 
each node for the ‘attractivity’ potential, as follows:  

       By subtraction from the previous equations, we have  
  ∂2A/∂u2 + ∂2A/∂v2 = I(u,v) - O(u,v),  

      where A = E - R (‘pull’ ☺ minus ‘push’ !) can be thought of as the attractivity of 
each location.  

     This is the well-known Poisson equation for which numerical solutions are easily 
obtained.  

The right hand side is the amount of change (In - Out).  
      Once A(u,v) - the potential - has been found from this equation, the net movement 

pattern is given by the vector field,  
V = grad A,  

    or by the difference in potential between each pair of mesh nodes.  
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These are solved by a finite difference iteration to obtain the potential 
field (after specifying a boundary condition). 

This potential can be contoured and its gradient computed and drawn on 
a map.  

In other words, a map is computed using a continuous version of the 
quadratic transportation problem. 

 
Estimates of the potentials for two different populations (male & female 

for example) can be added to get the correct potential for the sum. 
 

W. Tobler, 1981,"A Model of Geographic Movement", Geogr. Analysis, 13 (1): 1-20 
G. Dorigo, & Tobler, W., 1983, “Push Pull Migration Laws”, Annals, AAG, 73 (1): 1-17. 

 

The described result is a system of linear partial  
differential equations 
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Next example: starting from a 

Migration Table 
The nine division US census table from 1973 is illustrated. 

Note the asymmetry. 

The example that follows uses the (48 by 48) contiguous state table. 
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“Rasterize” the USA to form a lattice. 
Use a point-in-polygon program to assign nodes to individual states. Then assign in and out 

values to these nodes. There will be one equation for each node on this raster. 
Then solve the system of ~6000 simultaneous equations to yield the potential. 
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Solving the equations for the potential gave  

 The Pressure to Move in the US 
Based on this continuous spatial quadratic model 

Using state data 
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The resulting views: 

The migration potentials shown as contours 
and with gradient vectors connected to give streaklines 
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In the U.S. example both the in-migration and the 
out-migration amounts were spread over all of the 
nodes making up each of the individual states. 
Pycnophylactic reallocation was used to do this. 
Then the equations are set up and solved on the 
raster. 
    That these migration maps resemble maps of wind 
or ocean currents is not surprising given that we in 
f ac t speak o f mig ra t i on ‘ f l ows’ and 
‘backwaters’, and use many such hydrodynamic 
terms when discussing migration and movement 
phenomena. 

  The foregoing equations have captured some of this 
effect in a realistic manner. 
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The model described here has the interesting property that the 
amount of activity at a place is given as a weighted linear 
combinated of the differential activity of all of the places. 

The effect of any change at a single place is modulated by the remaining 
places and dampened in its impact. 

 
This effect is spatial - it is modulated by the distance between places. 

 
That is, changes in migration at one place impacts the migration at 

neighbors 
 

Thus the potential as here calculated has a great deal of inertia since it 
reflects the influence of all of the palaces simultaneously. 

 
Consequently we expect that it changes only slowly with time. 
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Additional illustration 
Migration in the Western United States by State Economic Areas 

Left 1935-1940. Right 1965-1970. 
As derived the model is static. Combing several dates is needed to make it dynamic. 
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Additional Illustration 
White and non-white migration 1935-1940 
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As a related item, world population estimates are now 
available by fine geographic (lat/lon) quadrangles,  

instead of ephemeral political units. 
 

Studies of urban commuting can also benefit from data 
recorded in a raster format instead of irregularly shaped  

traffic zones. 
 

Why does the census not release migration data in this format, 
by latitude and longitude quadrangles? 

     
    If that were done then the spherical version of the model 

described could be used directly. 
 

W. Tobler, 1997, “Movement Modeling on the Sphere”, Geographic and Environmental 
Modeling, 1(1): 97-103 
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   It’s like using a cookie cutter pressed into the continuous 
flow model to look at an arbitrary piece and computing the 
flow across its borders. 

  

The US Census Bureau could, but does not normally, provide 
this information. Thus a model must be used to make the 

prediction. 

         
 

          

One advantage of the continuous model, in addition to the 
clarity provided of the overall pattern and domains, is that 
by the insertion of arbitrary areal boundaries, and by using 
the model to calculate the amount of flux across these 
boundaries, one can obtain information not contained in the 
original data, i.e., make a prediction. 
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The US Census also has county to county migration tables. 
 

The 9x106 numbers in a county to county table are not a lot for 
a computer. But for humans? 

    This quantity of information could not be comprehended without some 
visualization techniques or without a model. 

 
    Most of the cells in the county to county table would be empty.  

 
   If the US county migration table has only 5% of the cells with non-zero 

entries that is still almost half a million numbers! 
     

    I do not think that I could cope with that much information without 
some aids in the form of techniques or theory. 
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Average county resolution ~55 km. Patterns greater than 110 km perhaps detectable.  
Patterns within cities are not visible. In these resels the resolution varies across the US. 
Imagine film with this kind of resolution. Would you send it back to the manufacturer? 
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16 Million People Migrating 
An ensemble average. Note the coherent structures. 
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For a world table of 
  
international migration  
refugee movements 
commodity trade 
  
one would have a table of nearly 40,000 entries.  

  

It is thus no surprise that few such tables exist. 
 

Have you noticed that almost no statistical volumes contain from-to tables. 
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France’s 36,545 Communes 



83 

Think Big! Think High Resolution! 

   The 36,545 communes of France could yield a 
movement or interaction table with as many as 

1,335,537,025 entries.  
(3 km average resolution)  

 
My assertion is: 

Looking at a table (or a conventional flow map) in this amount of detail 
would not be useful, but a vector field could show divergences, 

convergences, and reveal interesting domain patterns.  
 

 And the potential surface would yield further insight. 
 

A dynamic continuous model would be even more interesting. 
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I would like to end where I started 
repeating that I consider that 

 
 Geographical Movement  

is critically important. 
This is because much change in the world is due to 

geographical movement. 
 

Movement of  
people, information, disease, money, energy, or materiel. 

 
My own work has emphasized the movement of people. 
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